Difference between revisions of "Team:UNOTT/Description"

Line 10: Line 10:
  
  
<h5>Keycoli</h5>
+
<h5>Key. coli</h5>
 
<ul>
 
<ul>
 
<li> The first biological password that changes over time!
 
<li> The first biological password that changes over time!
Microorganism is transformed using BioBricks to produce secondary metabolites, initially the metabolites will be a simpler product such as fluorescent proteins. The secondary metabolites will be produced in a unique and random configuration and as as our "key". In order to produce this randomness, shuffling of metabolite expression levels via transposons or error prone RNase will be applied. To produce a unique configuration of the metabolite varying promoter expression levels will produce unique metabolites. This key will be used to open locked mechanism such as safes and secure doors.
+
We are looking into transforming bacteria with a unique array of existing iGEM systems to produce a unique signal of secondary metabolites, initially using fluorescence as a proof of concept. Eventually, we will use the system to produce a unique and random configuration of secondary metabolites, as our "key". In order to produce this randomness, alteration of the activity or presence of promoters associated with these metabolites will be applied using one of a few methods currently being considered by the team.</li>
For the key to be practical it would need to be portable, this is where our key transport device comes in. It will consist of a similar design to a chemostat. Our Key colony metabolites will degrade a desired amount of time before they must be renewed from the Lock colony, when this occurs the configuration of the key is shuffled once again to ensure the key and lock are changing.
+
<li>This key will be used to open locked mechanism such as safes and secure doors. We see a system where the measurement of key engineered metabolites such as volatiles will give a distinct mass spectrum. A juxtaposition of a detection technique such as gas chromotography-mass spectrometry and data comparison software will compare the secondary metabolites of the "key" bacteria to the "reference/lock" from which it was taken. If the spectra of both colonies exceeds a threshold of similarity the locked object will become unlocked.</li>
Once the key has been transported to the locked object a juxtaposition of a detection technique such as gas chromotography or mass spectrometry and data comparison software will compare the secondary metabolites of the "key" microorganism to the "reference/lock" colony. If the metabolies of both colonies exceeds a threshold of similarity the locked object will become unlocked.</li>
+
<li>For the key to be practical it would need to be portable, this is where the design of our key transport device comes in. We are currently looking into a system of a similar design to a chemostat where a continual supply of medium will allow maintenance of a culture. Other options we are looking into include the use of freeze-dried cells or microfluidics.</li>
<li>A detailed explanation of why your team chose to work on this particular project.</li>
+
<li>After a certain amount of time, our Key will have to be renewed from the Lock colony, and when this occurs the configuration of the key is shuffled once again to ensure the key and lock are changing. </li>
<li>References and sources to document your research.</li>
+
<li>Use illustrations and other visual resources to explain your project.</li>
+
 
</ul>
 
</ul>
  

Revision as of 17:48, 28 June 2017

UNOTT

Description

Tell us about your project, describe what moves you and why this is something important for your team.

Key. coli
  • The first biological password that changes over time! We are looking into transforming bacteria with a unique array of existing iGEM systems to produce a unique signal of secondary metabolites, initially using fluorescence as a proof of concept. Eventually, we will use the system to produce a unique and random configuration of secondary metabolites, as our "key". In order to produce this randomness, alteration of the activity or presence of promoters associated with these metabolites will be applied using one of a few methods currently being considered by the team.
  • This key will be used to open locked mechanism such as safes and secure doors. We see a system where the measurement of key engineered metabolites such as volatiles will give a distinct mass spectrum. A juxtaposition of a detection technique such as gas chromotography-mass spectrometry and data comparison software will compare the secondary metabolites of the "key" bacteria to the "reference/lock" from which it was taken. If the spectra of both colonies exceeds a threshold of similarity the locked object will become unlocked.
  • For the key to be practical it would need to be portable, this is where the design of our key transport device comes in. We are currently looking into a system of a similar design to a chemostat where a continual supply of medium will allow maintenance of a culture. Other options we are looking into include the use of freeze-dried cells or microfluidics.
  • After a certain amount of time, our Key will have to be renewed from the Lock colony, and when this occurs the configuration of the key is shuffled once again to ensure the key and lock are changing.
Advice on writing your Project Description

We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.

Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.

References

iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.

Inspiration

See how other teams have described and presented their projects: