Difference between revisions of "Team:NYMU-Taipei/Model"

 
(126 intermediate revisions by 6 users not shown)
Line 15: Line 15:
 
background-color:#393a1f;
 
background-color:#393a1f;
 
background-image:url('https://static.igem.org/mediawiki/2017/2/24/T--NYMU-Taipei--model_background.png');
 
background-image:url('https://static.igem.org/mediawiki/2017/2/24/T--NYMU-Taipei--model_background.png');
 +
background-attachment: fixed;
 
}
 
}
 
 
Line 21: Line 22:
 
text-shadow: 4px 4px 4px #3d3d3d;
 
text-shadow: 4px 4px 4px #3d3d3d;
 
}
 
}
 +
 +
.igem_2017_content_wrapper table {
 +
font-family:"Roboto Mono", monospace;
 +
width:70%;
 +
font-size: 14px;
 +
color:#555555;
 +
background-color:rgba(246, 255, 178, 0);
 +
border: 1px solid #555555;
 +
margin:auto;
 +
margin-top:25px;
 +
}
 +
 +
.igem_2017_content_wrapper th {
 +
padding:3px;
 +
border: 1px solid #555555;
 +
}
 +
 
 
 
.model_wrapper {
 
.model_wrapper {
background-color: rgba(57, 58, 31, 0);
+
background-color: rgba(57, 58, 31, 0.8);
 
border: 1px solid transparent;
 
border: 1px solid transparent;
 
border-radius: 4px;
 
border-radius: 4px;
+
padding:5px;
-webkit-box-shadow: 0 1px 1px rgba(0, 0, 0, .05);
+
padding-right:12px;
box-shadow: 0 1px 1px rgba(0, 0, 0, .05);
+
width:930px;
padding:15px;
+
width:920px;
+
 
margin: auto;
 
margin: auto;
 
margin-top:10px;
 
margin-top:10px;
Line 37: Line 53:
 
.model_wrapper p {
 
.model_wrapper p {
 
color: #f6ffb2;
 
color: #f6ffb2;
 +
padding-left:20px;
 
}
 
}
 +
 +
.model_wrapper h1 {
 +
color:#f6ffb2;
 +
text-shadow: 4px 4px 4px #393a1f;
 +
padding: 30px 20px 15px 0px;
 +
margin:0px;
 +
margin-top:30px;
 +
 +
}
 +
 +
 
 
 
/* Show & hide */
 
/* Show & hide */
Line 67: Line 95:
 
@media only screen and (max-width: 1300px) {
 
@media only screen and (max-width: 1300px) {
 
.panel {width:92%}
 
.panel {width:92%}
 +
.model_wrapper {width:93%}
 
}
 
}
 
 
Line 73: Line 102:
 
@media only screen and (max-width: 1200px) {
 
@media only screen and (max-width: 1200px) {
 
.panel {width:96%}
 
.panel {width:96%}
 +
.model_wrapper {width:96.5%}
 
}
 
}
 
 
 +
       
 
</style>
 
</style>
 
 
Line 198: Line 229:
 
}
 
}
 
}
 
}
 +
 +
function toggleHeight13(e, maxHeight) {
 +
e = document.getElementById("s13"); // e = the gray div
 +
   
 +
if(e.style.height != '30px') {
 +
e.style.height = '30px'; // height of one line: 20px
 +
} else {
 +
e.style.height = maxHeight + 'px';
 +
}
 +
}   
 +
 +
function toggleHeight14(e, maxHeight) {
 +
e = document.getElementById("s14"); // e = the gray div
 +
   
 +
if(e.style.height != '30px') {
 +
e.style.height = '30px'; // height of one line: 20px
 +
} else {
 +
e.style.height = maxHeight + 'px';
 +
}
 +
}
 
</script>
 
</script>
 
 
Line 211: Line 262:
 
<!-- Abstract -->
 
<!-- Abstract -->
 
<div class='model_wrapper'>
 
<div class='model_wrapper'>
<p>Modeling is an extremely important part to our project, because it helps us accurately check and predict the results of the experiments, which are worked in the wet lab. In our project, there are two essential types of microalgae that play very important roles, Chlorella vulgaris and Synechosistic PCC7942. The following will show our success in modeling.
+
<p>  This year, our modeling focuses on predicting the effect of our modified microbes on productivity. It is an extremely important part to our project because it helps us accurately check and predict information from our experiments that are tested in the wet lab. In our project, there are two essential types of microalgae that play very important roles, <i>Synechococcus PCC7942</i> and <i>Chlorella vulgaris</i>. The following descriptions will show our success in modeling.
 
</p>
 
</p>
 
</div>
 
</div>
 
 
<!--Growth curve of Chlorella vulgaris-->
+
<!--PCC7942-->
 +
 +
<h1><i>Synechococcus PCC7942</i></h1>
 +
<div class='model_wrapper' >
 +
<p>  The modeling from Figure 1 to Figure 5 belongs to the experiments of <i>Synechococcus PCC7942</i> pigments for better photosynthetic efficiencies. We need to check if another microalgae contains an exogenous pigment that can successfully reach new photosynthesis rate and further increase the proportion of biomass. We already have models about the influence of energy adsorption, but pigments will certainly affect other factors. Therefore, we construct several models that each represents an important factor in the growth and cell composition. Thus, we can determine the best culturing collocation by combining these models.
 +
</p>
 +
</div>
 +
 +
<!-- Photosynthesis rate of algae -->
 
<div class='panel'>
 
<div class='panel'>
<div id="s1" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s8" class="expandable" style='height: 30px;padding-top:15px;'>
<a href="#!" onclick="toggleHeight1(this, 1400); return false"  
+
 +
<a href="#!" onclick="toggleHeight8(this, 1680); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Growth curve of <i>Chlorella vulgaris</i>
+
Photosynthesis rate of algae
 
</a>
 
</a>
 
<p>The timing of adding engineering <i>E.coli</i> or purified protein to <i>Chlorella vulgaris</i> culture is critical for our project. Through the initial, final biomass concentration data, the instantaneous rate of a reference time and other lab environment datas, we simulate the change in biomass concentration throughout the culture cycle. The status information in the culture medium at each point is then obtained through the other calculus to obtain the best timing point and the corresponding state.</p>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>ln(Xt/X0)/t=A+Bexp(-C(t-M))=μ(specific growth rate)</h6>
 
 
 
+
<p>  We want to use pigments to enhance the photosynthesis rate. Different pigment absorbs different wavelength of sunlight and bring about different irradiance, body temperature, and photosynthesis rate. These two models show the influence of irradiance and temperature on photosynthesis rate.
+
<blockquote>
+
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
X: biomass concentration(g/l)
+
<br>t: time(hr)
+
<br>A: the asymptotic of ln Xt/Xo as t decrese indefinitely
+
<br>B: the asymptotic of ln Xt/Xo as t increase indefinitely
+
<br>C: the relative growth rate at time M
+
 
</p>
 
</p>
</blockquote>
 
 
 
 +
<!-- 1-1 -->
 +
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 +
R = R<sub>max</sub> * i<sup>n</sup> / [k<sub>i</sub> * exp(i*m) + i<sup>n</sup>]
 +
</h6>
 +
 +
                        <table>
 +
                        <tr>
 +
                            <th>Symbol</th>
 +
                            <th scope="col">Definition</th>
 +
                            <th scope="col"&>Unit</th>
 +
                            <th scope="col"&>Value</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>R</th>
 +
                            <th>CO<sub>2</sub> productive rate</th>
 +
                            <th>mol/g*min </th>
 +
                            <th>0.000046</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>i</th>
 +
                            <th>irradiance</th>
 +
                            <th>uE/m<sup>2</sup></th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                              <th>n</th>
 +
                              <th>irradiance exponential constant</th>
 +
                              <th>-</th>
 +
                              <th>1.19</th>
 +
                        </tr>
 +
                        <tr>
 +
                              <th>k<sub>i</sub></th>
 +
                              <th>productive coefficient</th>
 +
                              <th>uE/(m<sup>2</sup>)*s</th>
 +
                              <th>174</th>
 +
                        </tr>
 +
                        <tr>
 +
                              <th>m</th>
 +
                              <th>constant</th>
 +
                              <th>(m<sup>2</sup>)*s /uE</th>
 +
                              <th>0.0022</th>
 +
                        </tr>
 +
                      </table>
 +
 +
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/0/04/T--NYMU-Taipei--model_growth_curve.gif'  
+
<img src='https://static.igem.org/mediawiki/2017/8/89/T--NYMU-Taipei--model_i-rco2.png'  
alt='Growth curve of Chlorella vulgaris'
+
alt='irradiance-photosynthesis rate plot'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.1-1 Growth curve of <i>Chlorella vulgaris</i></p>
+
<p style='font-size:20px'>Fig.1-1 Influence of irradiance on photosynthesis rate</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
+
 +
<!-- 1-2 -->
 +
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 +
R = A<sub>1</sub> exp(-E<sub>1</sub>rT) - A<sub>2</sub> exp(-E<sub>2</sub>/rT)
 +
</h6>
 +
 
 +
                        <table>
 +
                        <tr>
 +
                            <th>Symbol</th>
 +
                            <th scope="col">Definition</th>
 +
                            <th scope="col"&>Unit</th>
 +
                            <th scope="col"&>Value</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>R</th>
 +
                            <th>CO<sub>2</sub> productive rate</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>A<sub>1</sub></th>
 +
                            <th>preexponential factor at i=400</th>
 +
                            <th>-</th>
 +
                            <th>1147.7</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>A<sub>2</sub></th>
 +
                              <th>preexponential factor at i=200</th>
 +
                              <th>-</th>
 +
                              <th>3.818*10<sup>8</sup></th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>E<sub>1</sub></th>
 +
                              <th>activation energy at i=400</th>
 +
                              <th>mol/J </th>
 +
                              <th>42700</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>E<sub>2</sub></th>
 +
                              <th>activation energy at i=200</th>
 +
                              <th>mol/J</th>
 +
                              <th>77100</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>T</th>
 +
                              <th>temperature</th>
 +
                              <th>K</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                      </table>
 +
 
 +
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/e/e5/T--NYMU-Taipei--model_growth_rate.gif'  
+
<img src='https://static.igem.org/mediawiki/2017/6/6a/T--NYMU-Taipei--model_t-rco2.png'  
alt='Growth rate of Chlorella vulgaris'
+
alt='temperature-photosynthesis rate plot'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.1-2 Growth rate of <i>Chlorella vulgaris</i></p>
+
<p style='font-size:20px'>Fig.1-2 Influence of temperature on photosynthesis rate</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
+
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight1(this, 1400);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight8(this, 1680);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
</center>
+
</center>
+
 
</div>
 
</div>
</div>
+
</div>
+
 
<!-- oil accumulation and nitrogen source consumption -->
+
<!-- Simulation of energy absorption of each pigment -->
 
<div class='panel'>
 
<div class='panel'>
<div id="s2" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s9" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight2(this, 1160); return false"  
+
<a href="#!" onclick="toggleHeight9(this, 1040); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Oil accumulation & Nirogen source consumption
+
Simulation of energy absorption of each pigment
 
</a>
 
</a>
 +
 +
<p>  The simplified graph from sunshine distribution is used to approximately calculate how much energy is absorbed by each pigment and quantifies the photon adsorption amount after conversion.
 +
</p>
 +
 
 
<p>Simulating common system of oil accumulation and nitrogen source consumption, not only get the reference of state before the improvement as well as the stage information, but also as a basic equation after some parameters or organisms join into the system.</p>
 
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
dP/dt=*dX/dt+*X;
+
y = 0.01x - 3.5, 400<=x<=500
 
<br>
 
<br>
<br>dN/dt=-V*X;
+
<br>y = 1.5, 501<=x<=600
 
<br>
 
<br>
<br>V=((qM-Q)/(qM-q))*((Vm*N)/(N+Vh));
+
<br>y = 3 - 0.0025*x, 601<=x<= 800
<br>
+
<br>Q=(X0*Q0+N0-N)/X;
+
 
</h6>
 
</h6>
 
 
 +
<table>
 +
                        <tr>
 +
                            <th>Symbol</th>
 +
                            <th scope="col">Definition</th>
 +
                            <th scope="col"&>Unit</th>
 +
                            <th scope="col"&>Value</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>x</th>
 +
                            <th>wavelength</th>
 +
                            <th>nm</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>y</th>
 +
                            <th>irradiance</th>
 +
                            <th>W/m<sup>2</sup></th>
 +
                            <th>-</th>
 +
                        </tr>
 +
</table>
 +
 +
<!--
 
<blockquote>  
 
<blockquote>  
 
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
 
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
P: lipid
+
x:
<br>N: nitrogen
+
<br>y:
<br>X: biomass
+
<br>
+
<br>α: the instantaneous yield coefficient of product formation due to cell growth
+
<br>β: the specific formation rate of product
+
<br>
+
<br>q: Minimum N quota
+
<br>qM: Maximum N quota
+
<br>Q: N quota
+
<br>Vm: Maximum uptake rate of nitrogen
+
<br>Vh: Half-saturation coefficient
+
 
</p>
 
</p>
</blockquote>
+
</blockquote>-->
+
 
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/c/ca/T--NYMU-Taipei--model_L%26N.gif'  
+
<img src='https://static.igem.org/mediawiki/2017/f/fb/T--NYMU-Taipei--model_energy-pigment.png'  
alt='Oil accumulation and nirogen source consumption at normal situation'
+
alt='Simulation of energy absorption of each pigment'
style='width:90%'>
+
style='width:55%'>
<p style='font-size:20px'>fig.2 Oil accumulation and nirogen source consumption at normal situation</p>
+
<p style='font-size:20px'>Fig.2 Simulation of energy absorption of each pigment</p>
 
</center>
 
</center>
<p></p>
+
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight2(this, 1160);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight9(this, 1040);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
 
</center>
 
</center>
 
 
</div>
 
</div>
 
</div>
 
</div>
 +
 
 
<!-- Biomass in different nitrogen concentration-->
+
<!-- Microalgae productivity in different temperatures -->
 
<div class='panel'>
 
<div class='panel'>
<div id="s3" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s10" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight3(this, 1070); return false"  
+
<a href="#!" onclick="toggleHeight10(this, 960); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Biomass in different nitrogen concentration
+
Microalgae productivity in different temperatures
 
</a>
 
</a>
+
<p>To find the optimal amount of nitrogen removal, we model biomass decrease in different nitrogen concentration environments, and then we can find the best productivity.
+
<p>  After we get the influential degree on temperature, we can use our modeling to predict the productivity of microalgae at different temperature without other affecting factors. Modeling is used to ensure that our experiments are under control.
 
</p>
 
</p>
 
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
n2=exp((A+C*exp(-exp(-B(t-M))))*(t2-t1))*n1;
+
U = U<sub>max</sub> * K<sub>ss</sub>
 
<br>
 
<br>
<br>x2=x1+(n2-n1)*((k(ln(b(ns+a))^-1))-e);
+
<br>U<sub>max</sub> = A*exp(-E/RT)
 
</h6>
 
</h6>
 
<blockquote>
 
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
 
n1: biomass at frist state
 
<br>n2: biomass at secind state
 
<br>x: biomass concentration(g/l)
 
<br>t: time(hr)
 
<br>
 
<br>A: the asymptotic of ln Xt/Xo as t decrese indefinitely  //-39.9532
 
<br>B: the asymptotic of ln Xt/Xo as t increase indefinitely //-0.0222
 
<br>C: the relative growth rate at time M hr  //45.6931
 
<br>
 
<br>k: constant //8.15229
 
<br>b:yield coefficient//1207.569
 
<br>ns:initial nitrogen concentration
 
<br>a:regression constant//0.01
 
<br>e:a perturbation//0.50678
 
</p>
 
</blockquote>
 
  
 +
                        <table>
 +
                        <tr>
 +
                            <th>Symbol</th>
 +
                            <th scope="col">Definition</th>
 +
                            <th scope="col"&>Unit</th>
 +
                            <th scope="col"&>Value</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>U</th>
 +
                            <th>specific growth rate</th>
 +
                            <th>day<sup>-1</sup></th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>U<sub>max</sub></th>
 +
                            <th>maximum specific growth rate</th>
 +
                            <th>day<sup>-1</sup></th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>K<sub>ss</sub></th>
 +
                              <th>substrate parameter</th>
 +
                              <th>-</th>
 +
                              <th>1</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>A</th>
 +
                              <th>constant</th>
 +
                              <th>day<sup>-1</sup></th>
 +
                              <th>1.0114*10<sup>10</sup></th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>E</th>
 +
                              <th>activation energy</th>
 +
                              <th>cal / mol</th>
 +
                              <th>6842</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>R</th>
 +
                              <th>gas constant </th>
 +
                              <th>cal / K*mol </th>
 +
                              <th>8.314</th>
 +
                        </tr>
 +
                      </table>
 +
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/e/e1/T--NYMU-Taipei--model_biomass.gif'  
+
<img src='https://static.igem.org/mediawiki/2017/8/8c/T--NYMU-Taipei--model_t-spr.png'  
alt='Biomass in different nitrogen concentration'
+
alt='Microalgae productivity in different temperatures'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.3 Biomass in different nitrogen concentration</p>
+
<p style='font-size:20px'>Fig.3 Microalgae productivity in different temperatures</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight3(this, 1070);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight10(this, 960);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
 
</center>
 
</center>
 
</div>
 
</div>
</div>
+
</div>
  
<!-- Nitrogen source in nitrogen starvation -->
+
<!-- Microalgae productivity in different pH values-->
 
<div class='panel'>
 
<div class='panel'>
<div id="s4" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s11" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight4(this, 860); return false"  
+
<a href="#!" onclick="toggleHeight11(this, 1020); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Nitrogen concentration in nitrogen starvation
+
Microalgae productivity in different pH values
 
</a>
 
</a>
+
<p>Put normal and modified nitrogen source system together,see their demonstration, like speed and occasion.by constructing this model,we can find out the declining rate of each state,then adjust experiment.
+
<p>  When our <i>Synechococcus PCC7942</i> grows at each phase, the equilibrium of the pH value is different. This model can be used to collocate with our device, and also accomplish the purpose of enhancing productivity.
 
</p>
 
</p>
 
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
dn/dt=Yxn*dx/dt+m*x
+
R = A<sub>1</sub> exp(-B<sub>1</sub>/pH) - A<sub>2</sub> exp(-B<sub>2</sub>/pH)
 
</h6>
 
</h6>
 
 
<blockquote>  
+
                        <table>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                        <tr>
n: nitrogen concentration
+
                            <th>Symbol</th>
<br>Yxn: nitrate coefficient  g/g  0.21016
+
                            <th scope="col">Definition</th>
<br>m: maintenance parameter hr^-1 0.0014393
+
                            <th scope="col"&>Unit</th>
<br>x: biomass concentration
+
                            <th scope="col"&>Value</th>
</p>
+
                        </tr>
</blockquote>
+
                        <tr>
 
+
                            <th>R</th>
 +
                            <th>CO<sub>2</sub> productive rate</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>A<sub>1</sub></th>
 +
                            <th>preexponential factor at i=400</th>
 +
                            <th>-</th>
 +
                            <th>8.625*10<sup>-5</sup></th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>A<sub>2</sub></th>
 +
                              <th>preexponential factor at i=200</th>
 +
                              <th>-</th>
 +
                              <th>1.83885*10<sup>-2</sup></th>
 +
                        </tr>
 +
                        <tr>
 +
                              <th>B<sub>1</sub></th>
 +
                              <th>activation energy at i=400</th>
 +
                              <th>mol/J</th>
 +
                              <th>6.45</th>
 +
                        </tr>
 +
                        <tr>
 +
                              <th>B<sub>2</sub></th>
 +
                              <th>activation energy at i=200</th>
 +
                              <th>mol/J</th>
 +
                              <th>69.2</th>
 +
                        </tr>
 +
                        </table>
 +
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/5/5b/T--NYMU-Taipei--model_ns_nitrogen.gif'  
+
<img src='https://static.igem.org/mediawiki/2017/3/36/T--NYMU-Taipei--model_ph-rco2.png'  
alt='Nitrogen source in nitrogen starvation'
+
alt='Microalgae productivity in different pH'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.4 Nitrogen source in nitrogen starvation</p>
+
<p style='font-size:20px'>Fig.4 Microalgae productivity in different pH</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight4(this, 860);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight11(this, 1020);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
Line 416: Line 627:
 
</div>
 
</div>
  
<!-- Oil accumulation in nitrogen starvation -->
+
<!-- The relation between photosynthetic rate and total absorption -->
 
<div class='panel'>
 
<div class='panel'>
<div id="s5" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s12" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight5(this, 800); return false"  
+
<a href="#!" onclick="toggleHeight12(this, 960); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Oil accumulation in nitrogen starvation
+
The relation between photosynthetic rate and total absorption
 
</a>
 
</a>
+
<p>We predict total lipid increase under nitrogen starvation. The model provide theoretical information of top yield. This graph show that if we use symbiotic microbe isolating nitrogen source temporarily and successfully, the productivity will be enhanced.
+
<p>  The model tells us that theoretically, there is no faster photosynthetic rate unless more energy is absorbed. After working with other models, we established the relationship between photosynthetic rate and total absorption for the purpose of best balance.
 
</p>
 
</p>
 
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
dp/dt=k1(dx/dt)^2+k2(dx/dt)(x)+e
+
R = R<sub>max</sub> * e<sup>n</sup> / [k<sub>e</sub> * exp(e*m) + e<sup>n</sup>]
 
</h6>
 
</h6>
 
 
<blockquote>  
+
                      <table>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                        <tr>
p: lipid concentrtion
+
                            <th>Symbol</th>
<br>K1: growth correlation coefficient g^2/g^2 //122.40085
+
                            <th scope="col">Definition</th>
<br>K2: non-growth correlation coefficient g^-1 //0.28736
+
                            <th scope="col"&>Unit</th>
<br>e: a perturbation g/l*hr //-0.078
+
                            <th scope="col"&>Value</th>
</p>
+
                        </tr>
</blockquote>
+
                        <tr>
 +
                            <th>R<sub>max</sub></th>
 +
                            <th>maximum rate</th>
 +
                            <th>mol / g*min </th>
 +
                            <th>0.000046</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>e</th>
 +
                            <th>absorbed energy</th>
 +
                            <th>w/m<sup>2</sup></th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>n</th>
 +
                              <th>energy exponential constant</th>
 +
                              <th>-</th>
 +
                              <th>1.252</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>k<sub>e</sub></th>
 +
                              <th>productive coefficient</th>
 +
                              <th>uE / (m<sup>2</sup>)*s</th>
 +
                              <th>157.88</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>m</th>
 +
                              <th>constant</th>
 +
                              <th>(m<sup>2</sup>)*s / uE</th>
 +
                              <th>0.0035</th>
 +
                        </tr>
 +
                      </table>
  
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/e/e8/T--NYMU-Taipei--model_ns_oil.gif'  
+
<img src='https://static.igem.org/mediawiki/2017/a/a2/T--NYMU-Taipei--model_e-rco2.png'  
alt='Oil accumulation in nitrogen starvation'
+
alt='The relation between photosynthetic rate and total yield'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.5 Oil accumulation in nitrogen starvation</p>
+
<p style='font-size:20px'>Fig.5 The relation between photosynthetic rate and total absorption</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight5(this, 800);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight12(this, 960);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
Line 457: Line 698:
 
</div>
 
</div>
 
</div>
 
</div>
 
+
<!-- Population of co-cultured Chlorella and modified E.coli -->
+
 +
<!--chorella-->
 +
 +
<h1><i>Chlorella vulgaris</i></h1>
 +
<div class='model_wrapper' >
 +
<p>  The modeling from Figure 6 to Figure 13 belongs to the experiments of <i>Chlorella vulgaris</i> for nitrogen starvation. To precisely calculate the timing of starting co-culturing and to ensure there are enough high-affinity E. coli in the bioreactor, we built several models that include the original and new system. They demonstrated the significant improvement of productivity after successfully deprived the microalgae from nitrogen. For instance, one of them provides a variety of information about population when two organisms in the pool start building some relationship.
 +
</p>
 +
</div>
 +
 +
<!--Growth curve of Chlorella vulgaris-->
 
<div class='panel'>
 
<div class='panel'>
<div id="s6" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s1" class="expandable" style='height: 30px;padding-top:15px;'>
+
<a href="#!" onclick="toggleHeight1(this, 1580); return false"  
<a href="#!" onclick="toggleHeight6(this, 1980); return false"  
+
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Population of co-cultured Chlorella and modified E.coli
+
Growth curve of <i>Chlorella vulgaris</i>
 
</a>
 
</a>
+
<p>According to our reference experiment data, we find that e.coli can build a relationship with chlorella like symbiosis. So we build a model and use 3 kinds of situations’ value to simulate their change when they are co-cultured. According to it,we get the proper experimental proportion of them at each need.
+
<p>  The timing of adding engineered <i>E.coli</i> or purified protein to <i>Chlorella vulgaris</i> culture is critical to our project. By analyzing the initial and final biomass concentration data the instantaneous rate would be gained. This instantaneous rate is based on reference time and other lab environment data. We have simulated the change in biomass concentration throughout the culture cycle. The intermittent information in the culture medium at each point is ultimately gained through combining other modeling results, which aims to determine the best timing and corresponding state.
 
</p>
 
</p>
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
x2=(ax-x^2/(1+b*x*z))/Rx+x/Yx
+
ln(X<sub>t</sub>/X<sub>0</sub>) / t
<br>
+
<br>
<br>z2=(cz-z^2/(1+g*z*x))/Rz+z/Yz
+
<br>= A + B exp[-C(t-M)]
</h6>
+
<br>
+
<br>= μ (specific growth rate)</h6>
<blockquote>  
+
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                      <table>
X: chlorella vugaris
+
                        <tr>
<br>Z: e.coil
+
                            <th>Symbol</th>
<br>Rx: symbiosis coefficient g/hr //1.0000023
+
                            <th scope="col">Definition</th>
<br>Rz: symbiosis coefficient g/hr  //1.178
+
                            <th scope="col"&>Unit</th>
<br>Yx: correlation  coefficient//12.576
+
                            <th scope="col"&>Value</th>
<br>Yz: correlation  coefficient//2.276
+
                        </tr>
<br>a: population constant //0.80467
+
                        <tr>
<br>c: population constant//0.61198
+
                            <th>X</th>
<br>b: relative parameter //0.00027
+
                            <th>biomass concentration</th>
<br>g: relative parameter //0.0013
+
                            <th>g/l</th>
</p>
+
                            <th>-</th>
</blockquote>
+
                        </tr>
 
+
                        <tr>
 +
                            <th>t</th>
 +
                            <th>time</th>
 +
                            <th>hr</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>A</th>
 +
                              <th>the asymptotic of ln X<sub>t</sub>/X<sub>0</sub> as t decrese indefinitely</th>
 +
                              <th>-</th>
 +
                              <th>1.252</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>B</th>
 +
                              <th>the asymptotic of ln X<sub>t</sub>/X<sub>0</sub> as t increase indefinitely</th>
 +
                              <th>-</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>C</th>
 +
                              <th>the relative growth rate at time</th>
 +
                              <th>M</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                      </table>
 +
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/a/a5/T--NYMU-Taipei--model_population1.gif'  
+
<img src='https://static.igem.org/mediawiki/2017/0/04/T--NYMU-Taipei--model_growth_curve.gif'  
alt='Population of co-cultured Chlorella and modified E.coli'
+
alt='Growth curve of Chlorella vulgaris'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.6-1 Population of co-cultured Chlorella and modified E.coli</p>
+
<p style='font-size:20px'>Fig.6-1 Growth curve of <i>Chlorella vulgaris</i></p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/e/eb/T--NYMU-Taipei--model_population2.gif'  
+
<img src='https://static.igem.org/mediawiki/2017/e/e5/T--NYMU-Taipei--model_growth_rate.gif'  
alt='Population of co-cultured Chlorella and modified E.coli'
+
alt='Growth rate of Chlorella vulgaris'
style='width:65%'>
+
<p style='font-size:20px'>fig.6-2 Population of co-cultured Chlorella and modified E.coli</p>
+
</center>
+
<p></p>
+
+
<center>
+
<img src='https://static.igem.org/mediawiki/2017/b/b0/T--NYMU-Taipei--model_populaiton3.gif'
+
alt='Population of co-cultured Chlorella and modified E.coli'
+
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.6-3 Population of co-cultured Chlorella and modified E.coli</p>
+
<p style='font-size:20px'>Fig.6-2 Growth rate of <i>Chlorella vulgaris</i></p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight6(this, 1980);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight1(this, 1580);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
 
</center>
 
</center>
+
 
</div>
 
</div>
</div>
+
</div>
 
+
<!-- Nitrogen-lipid plot -->
+
<!-- oil accumulation and nitrogen source consumption -->
 
<div class='panel'>
 
<div class='panel'>
<div id="s7" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s2" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight7(this, 810); return false"  
+
<a href="#!" onclick="toggleHeight2(this, 1250); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Nitrogen-lipid plot
+
Oil accumulation & Nitrogen source consumption
 
</a>
 
</a>
 
 
<p>This chart demonstrate the connection between initial nitrogen concentration and final lipid proportion in algae cell.tell us the approximately trend of it.
+
<p>  By simulating common systems of oil accumulation and nitrogen source consumption, we cannot only get the reference data before the improvement, but also make it a basic equation after joining some parameters or organisms into the system.
 
</p>
 
</p>
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
l=k(ln(b(ns+a))^-1)-e
+
dP/dt = αdX/dt + βX;
 +
<br>
 +
<br>dN/dt = -V*X;
 +
<br>
 +
<br>V = [(q<sub>M</sub>-Q)/(q<sub>M</sub>-q)] * [(V<sub>m</sub>*N)/(N+V<sub>h</sub>)]
 +
<br>
 +
<br>Q = (X<sub>0</sub>*Q<sub>0</sub> + N<sub>0</sub> - N) / X
 
</h6>
 
</h6>
 
 
<blockquote>  
+
                      <table>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                        <tr>
l: lipid proportion in cell
+
                            <th>Symbol</th>
<br>k: constant  g/100g //1.13372
+
                            <th scope="col">Definition</th>
<br>b: yield coefficient//1.57172
+
                            <th scope="col">Unit</th>
<br>ns: initial nitrogen concentration
+
                            <th scope="col"&>Value</th>
<br>a: regression constant//0.51653
+
                        </tr>
<br>e: a perturbation g/100g//-55.2776
+
<tr>
</p>
+
                            <th>P</th>
</blockquote>
+
                            <th>lipid</th>
 +
                            <th>g/L</th>
 +
                            <th>-</th>
 +
                        <tr>  
 +
                        <tr>
 +
                            <th>N</th>
 +
                            <th>nitrogen</th>
 +
                            <th>g/L</th>
 +
                            <th>-</th>
 +
                        <tr>
 +
<tr>
 +
                            <th>X</th>
 +
                            <th>biomass</th>
 +
                            <th>g/L</th>
 +
                            <th>-</th>
 +
                        <tr>
 +
                            <th>α</th>
 +
                            <th>the instantaneous yield coefficient of product formation due to cell growth</th>
 +
                            <th>g/g</th>
 +
                            <th>0.1973</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>β</th>
 +
                            <th>the specific formation rate of product</th>
 +
                            <th>day<sup>-1</sup></th>
 +
                            <th>0.00037</th>
 +
                        <tr>
 +
                        <tr>
 +
                            <th>q</th>
 +
                            <th>Minimum N quota</th>
 +
                            <th>g/g</th>
 +
                            <th>0.0178</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>q<sub>M</sub></th>
 +
<th>Maximum N quota</th>
 +
<th>g/g</th>
 +
                            <th>0.0935</th>
 +
                           
 +
                        </tr>
 +
                        <tr>
 +
                            <th>Q</th>
 +
                            <th>N quota</th>
 +
                            <th>g/g</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>V<sub>m</sub></th>
 +
                            <th>Maximum uptake rate of nitrogen</th>
 +
                            <th>g/g*day</th>
 +
                            <th>0.596</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>V<sub>h</sub></th>
 +
                            <th>Half-saturation coefficient</th>
 +
                            <th>g/m<sup>3</sup></th>
 +
                            <th>0.0000103</th>
 +
                        </tr>
 +
                      </table>
  
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/c/ce/T--NYMU-Taipei--model_nitrogen%2Blipid.png'  
+
<img src='https://static.igem.org/mediawiki/2017/c/ca/T--NYMU-Taipei--model_L%26N.gif'  
alt='Nitrogen-lipid plot'
+
alt='Oil accumulation and nirogen source consumption at normal situation'
style='width:65%'>
+
style='width:90%'>
<p style='font-size:20px'>fig.7 Nitrogen-lipid plot</p>
+
<p style='font-size:20px'>Fig.7 Oil accumulation and nirogen source consumption at normal situation(lipid:green;nitrogen:blue)</p>
 
</center>
 
</center>
<p></p>
+
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight7(this, 810);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight2(this, 1250);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
 
</center>
 
</center>
 +
 
</div>
 
</div>
</div>
+
</div>
 
+
<!-- Photosynthesis rate of algae -->
+
<!-- Biomass in different nitrogen concentrations-->
 
<div class='panel'>
 
<div class='panel'>
<div id="s8" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s3" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight8(this, 1620); return false"  
+
<a href="#!" onclick="toggleHeight3(this, 1250); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Photosynthesis rate of algae
+
Biomass in different nitrogen concentrations
 
</a>
 
</a>
 
 
<p>We want to use pigments to enhance photosynthesis rate. Different pigments adsorb different wavelength of sunlight, bring about different irradiance and temperature, and photosynthesis rate are different. These two models show the influence of irradiance and temperature on photosynthesis rate.
+
<p>  To find out the best quantity of nitrogen removal, we modeled several situations of decreasing the biomass in different environments with different concentration of nitrogen. We then find the best productivity by comparing these two situations.  
 
</p>
 
</p>
+
<!-- 8-1 -->
+
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
R=Rmax.i^n/(ki*exp(i.m)+i^n)
+
n<sub>2</sub> = exp{[A + C*exp(-exp(-B(t-M)))] * (t<sub>2</sub>-t<sub>1</sub>)} * n<sub>1</sub>;
 +
<br>
 +
<br>x<sub>2</sub> = x<sub>1</sub> + (n<sub>2</sub>-n<sub>1</sub>) * {[k[ln(b(n<sub>s</sub>+a))<sup>-1</sup>]]-e};
 
</h6>
 
</h6>
 
 
<blockquote>  
+
                      <table>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                        <tr>
R: co2 productive rate
+
                            <th>Symbol</th>
<br>Rmax: maximum rate mol/g*min //0.000046
+
                            <th scope="col">Definition</th>
<br>i: irradiance uE/m^2
+
                            <th scope="col">Unit</th>
<br>n: irradiance exponential constant//1.19
+
                            <th scope="col"&>Value</th>
<br>ki: productive coefficient uE/(m^2)*s //174
+
                        </tr>
<br>m: constant (m^2)*s /uE//0.0022
+
                        <tr>
</p>
+
                            <th>n<sub>1</sub></th>
</blockquote>
+
                            <th>biomass at frist state</th>
 +
                            <th>g/l</th>
 +
                            <th>-</th>                       
 +
                        </tr>
 +
<tr>
 +
                            <th>n<sub>2</sub></th>
 +
                            <th>biomass at secind state</th>
 +
                            <th>g/l</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>x</th>
 +
                            <th>biomass concentration</th>
 +
                            <th>g/l</th>
 +
                            <th>-</th>
 +
</tr>
 +
                        <tr>
 +
                            <th>t</th>
 +
                            <th>time</th>
 +
                            <th>hr</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        </table>
 +
 
 +
                        <table>
 +
                        <tr>
 +
                            <th>Symbol</th>
 +
                            <th scope="col">Definition</th>
 +
                            <th scope="col">Unit</th>
 +
                            <th scope="col"&>Value</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>A</th>
 +
                            <th>the asymptotic of ln X<sub>t</sub>/X<sub>0</sub> as t decrese indefinitely</th>
 +
                            <th>-</th>
 +
                            <th>-39.9532</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>B</th>
 +
                            <th>the asymptotic of ln X<sub>t</sub>/X<sub>0</sub> as t increase indefinitely </th>
 +
                            <th>-</th>
 +
                            <th>-0.0222</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>C</th>
 +
                              <th>the relative growth rate at time M hr</th>
 +
                              <th>-</th>
 +
                              <th>45.6931</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>k</th>
 +
                              <th>constant</th>
 +
                              <th>-</th>
 +
                              <th>8.15229</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>b</th>
 +
                              <th>yield coefficient</th>
 +
                              <th>-</th>
 +
                              <th>1207.569</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>n<sub>s</sub></th>
 +
                              <th>initial nitrogen concentration</th>
 +
                              <th>-</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>a</th>
 +
                              <th>regression constant</th>
 +
                              <th>-</th>
 +
                              <th>0.01</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>e</th>
 +
                              <th>a perturbation</th>
 +
                            <th>-</th>
 +
                              <th>0.50678</th>
 +
                        </tr>
 +
                        </table>
  
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/8/89/T--NYMU-Taipei--model_i-rco2.png'  
+
<img src='https://static.igem.org/mediawiki/2017/e/e1/T--NYMU-Taipei--model_biomass.gif'  
alt='irradiance-photosynthesis rate plot'
+
alt='Biomass in different nitrogen concentration'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.8-1 Influence of irradiance on photosynthesis rate</p>
+
<p style='font-size:20px'>Fig.8 Biomass in different nitrogen concentration(concentration after nitrogen deletion,black:0.1;red:0.03;green:0.02;blue:0.01;yellow:0.005  g/l)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
<!-- 8-2 -->
+
<center>
 +
<a href="#!" onclick="toggleHeight3(this, 1250);" style='font-size:20px;color:#2c498c'>
 +
click to close
 +
</a>
 +
</center>
 +
</div>
 +
</div>
 +
 
 +
<!-- Nitrogen source in nitrogen starvation -->
 +
<div class='panel'>
 +
<div id="s4" class="expandable" style='height: 30px;padding-top:15px;'>
 +
 +
<a href="#!" onclick="toggleHeight4(this, 900); return false"
 +
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 +
Nitrogen concentration in nitrogen starvation
 +
</a>
 +
 +
<p>  We put normal and modified nitrogen source systems together to see their demonstration like speed and occasion. By constructing this model, we can find out the declining rate of each state and then adjust our experiments.
 +
</p>
 +
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
R=A1exp(-E1/rT)-A2exp(-E2/rT)
+
dn/dt = Y<sub>xn</sub> * dx/dt + m*x
 
</h6>
 
</h6>
+
                      <table>
<blockquote>  
+
                        <tr>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                            <th>Symbol</th>
R: co2 productive rate
+
                            <th scope="col">Definition</th>
<br>A1:preexponential factor at i=400 //1147.7
+
                            <th scope="col"&>Unit</th>
<br>A2:preexponential factor at i=200 //3.818*10^8
+
                            <th scope="col"&>Value</th>
<br>E1:activation energy at i=400 mol/J //42700
+
                        </tr>
<br>E2:activation energy at i=200 mol/J //77100
+
                        <tr>
<br>T:temperature K
+
                            <th>n</th>
</p>
+
                            <th>nitrogen concentration</th>
</blockquote>
+
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>Y<sub>xn</sub></th>
 +
                            <th>nitrate coefficient</th>
 +
                            <th>g/g</th>
 +
                            <th>0.21016</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>m</th>
 +
                              <th>maintenance parameter</th>
 +
                              <th>hr<sup>-1</sup></th>
 +
                              <th>0.0014393</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>x</th>
 +
                              <th>biomass concentration</th>
 +
                              <th>-</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                      </table>
  
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/6/6a/T--NYMU-Taipei--model_t-rco2.png'  
+
<img src='https://static.igem.org/mediawiki/2017/5/5b/T--NYMU-Taipei--model_ns_nitrogen.gif'  
alt='temperature-photosynthesis rate plot'
+
alt='Nitrogen source in nitrogen starvation'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.8-2 Influence of temperature on photosynthesis rate</p>
+
<p style='font-size:20px'>Fig.9 Nitrogen source in nitrogen starvation(normal:blue;starvation:red)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
+
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight8(this, 1620);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight4(this, 900);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
</center>
+
</center>
 +
</div>
 
</div>
 
</div>
</div>
 
  
<!-- Simulation of energy absorption of each pigment -->
+
<!-- Oil accumulation in nitrogen starvation -->
 
<div class='panel'>
 
<div class='panel'>
<div id="s9" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s5" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight9(this, 1000); return false"  
+
<a href="#!" onclick="toggleHeight5(this, 960); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Simulation of energy absorption of each pigment
+
Oil accumulation in nitrogen starvation
 
</a>
 
</a>
+
<p>The simplified graph can be used to calculate how much energy be absorbed by  each pigments approximately, also knowing photon adsorption amount,after conversion.
+
<p>  We predict that total lipid will increase under nitrogen starvation. The modeling provides the theoretical information of the maximum of productivity. This graph shows that if we use symbiotic microbe to make nitrogen source isolated from the system temporarily and successfully, the productivity will be enhanced.
 
</p>
 
</p>
 
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
y=0.01*x-3.5, 400<=x<=500
+
dp/dt = k<sub>1</sub>(dx/dt)<sup>2</sup> + k<sub>2</sub>(dx/dt)(x) + e
<br>
+
<br>y=1.5, 501<=x<=600
+
<br>
+
<br>y=3-0.0025*x, 601<=x<=800
+
 
</h6>
 
</h6>
 
 
<blockquote>  
+
                      <table>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                        <tr>
x:
+
                            <th>Symbol</th>
<br>y:
+
                            <th scope="col">Definition</th>
</p>
+
                            <th scope="col"&>Unit</th>
</blockquote>
+
                            <th scope="col"&>Value</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>p</th>
 +
                            <th>lipid concentrtion</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>K<sub>1</sub></th>
 +
                            <th>growth correlation coefficient</th>
 +
                            <th>g<sup>2</sup>/g<sup>2</sup></th>
 +
                            <th>122.40085</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>K<sub>2</sub></th>
 +
                              <th>non-growth correlation coefficient</th>
 +
                              <th>g<sup>-1</sup></th>
 +
                              <th>0.28736</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>e</th>
 +
                              <th>a perturbation</th>
 +
                              <th>g/l*hr</th>
 +
                              <th>-0.078</th>
 +
                        </tr>
 +
                      </table>
  
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/f/fb/T--NYMU-Taipei--model_energy-pigment.png'  
+
<img src='https://static.igem.org/mediawiki/2017/e/e8/T--NYMU-Taipei--model_ns_oil.gif'  
alt='Simulation of energy absorption of each pigment'
+
alt='Oil accumulation in nitrogen starvation'
style='width:55%'>
+
style='width:65%'>
<p style='font-size:20px'>fig.9 Simulation of energy absorption of each pigment</p>
+
<p style='font-size:20px'>Fig.10 Oil accumulation in nitrogen starvation</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight9(this, 1000);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight5(this, 960);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
Line 683: Line 1,154:
 
</div>
 
</div>
  
+
<!-- Population of co-cultured Chlorella and modified E.coli -->
<!-- Microalgae productivity in different temperature -->
+
 
<div class='panel'>
 
<div class='panel'>
<div id="s10" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s6" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight10(this, 900); return false"  
+
<a href="#!" onclick="toggleHeight6(this, 2050); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Microalgae productivity in different temperature
+
Population of Co-cultured <i>Chlorella vulgaris</i> and Modified <i>E.coli</i>
 
</a>
 
</a>
+
<p>After we get the influence degree on temperature,with this model ,we can predict the microalgae productivity at each temperature with other condition keeping stable.It is one of those which use to ensure the experiment  in control.
+
<p>  According to our reference of experimental data, we find that <i>E.coli</i> can build a relationship, which is like symbiosis, with <i>Chlorella vulgaris</i>. Therefore, we build a model and use three kinds of values from different situations to simulate their change when they are co-cultured. According to this, we get the proper experimental proportion of them at each need.
 
</p>
 
</p>
 
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
U = Umax*Kss
+
x<sub>2</sub> = [ax-x<sup>2</sup>/(1+b*x*z)] / R<sub>x</sub> + x / Y<sub>x</sub>
 
<br>
 
<br>
<br>Umax = A*exp(-E/RT)
+
<br>z<sub>2</sub> = [cz-z<sup>2</sup>/(1+g*z*x)] / R<sub>z</sub> + z / Y<sub>z</sub>
 
</h6>
 
</h6>
 
 
<blockquote>  
+
                <table>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                        <tr>
U: specific growth rate day^-1
+
                            <th>Symbol</th>
<br>Umax: maximum specific growth rate day^-1
+
                            <th scope="col">Definition</th>
<br>Kss: substrate parameter //1
+
                            <th scope="col"&>Unit</th>
<br>A: constant day^-1 //1.0114*10^10
+
                            <th scope="col"&>Value</th>
<br>E: activation energy cal/mol//6842
+
                        </tr>
<br>R: gas constant cal/K*mol //8.314
+
                        <tr>
</p>
+
                            <th>Z</th>
</blockquote>
+
                            <th>e.coil</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>X</th>
 +
                            <th>chlorella vulgaris</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
 
 +
                        <tr>
 +
                            <th>R<sub>x</sub></th>
 +
                            <th>symbiosis coefficient</th>
 +
                            <th>g/hr</th>
 +
                            <th>1.0000023</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>R<sub>z</sub></th>
 +
                              <th>symbiosis coefficient</th>
 +
                              <th>g/hr</th>
 +
                              <th>1.178</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>Y<sub>x</sub></th>
 +
                              <th>correlation  coefficient</th>
 +
                              <th>-</th>
 +
                              <th>12.576</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>Y<sub>z</sub></th>
 +
                              <th>correlation  coefficient</th>
 +
                              <th>-</th>
 +
                              <th>2.276</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>a</th>
 +
                              <th>population constant</th>
 +
                              <th>-</th>
 +
                              <th>0.80467</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>c</th>
 +
                              <th>population constant</th>
 +
                              <th>-</th>
 +
                              <th>0.61198</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>b</th>
 +
                              <th>relative parameter</th>
 +
                              <th>-</th>
 +
                              <th>0.00027</th>
 +
                        </tr>
 +
                        <tr>
 +
                              <th>g</th>
 +
                              <th>relative parameter</th>
 +
                              <th>-</th>
 +
                              <th>0.0013</th>
 +
                        </tr>
 +
                      </table>
  
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/8/8c/T--NYMU-Taipei--model_t-spr.png'  
+
<img src='https://static.igem.org/mediawiki/2017/a/a5/T--NYMU-Taipei--model_population1.gif'
alt='Microalgae productivity in different temperature'
+
alt='Population of co-cultured Chlorella and modified E.coli'
 +
style='width:65%'>
 +
<p style='font-size:20px'>Fig.11-1 Population of co-cultured Chlorella and modified E.coli(initial concentration 0.1g/l) (chlorella vulgaris:green;e.coli:orange) </p>
 +
</center>
 +
<p></p>
 +
 +
<center>
 +
<img src='https://static.igem.org/mediawiki/2017/e/eb/T--NYMU-Taipei--model_population2.gif'  
 +
alt='Population of co-cultured Chlorella and modified E.coli'
 +
style='width:65%'>
 +
<p style='font-size:20px'>Fig.11-2 Population of co-cultured Chlorella and modified E.coli(initial concentration 0.012g/l)(chlorella vulgaris:green;e.coli:orange)</p>
 +
</center>
 +
<p></p>
 +
 +
<center>
 +
<img src='https://static.igem.org/mediawiki/2017/b/b0/T--NYMU-Taipei--model_populaiton3.gif'
 +
alt='Population of co-cultured Chlorella and modified E.coli'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.10 Microalgae productivity in different temperature</p>
+
<p style='font-size:20px'>Fig.11-3 Population of co-cultured Chlorella and modified E.coli(initial concentration 0.3g/l)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight10(this, 900);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight6(this, 2050);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
 
</center>
 
</center>
 +
 
</div>
 
</div>
</div>
+
</div>
  
<!-- Microalgae productivity in different pH -->
+
<!-- Nitrogen-lipid plot -->
 
<div class='panel'>
 
<div class='panel'>
<div id="s11" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s7" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight11(this, 910); return false"  
+
<a href="#!" onclick="toggleHeight7(this, 1000); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Microalgae productivity in different pH
+
Nitrogen-lipid plot
 
</a>
 
</a>
+
<p>During microalgae grow at each phase,the equilibrium of pH value is different. This model can be used to collocate with our device,also for the purpose of enhance productivity.
+
<p>  This chart demonstrates the connection between initial nitrogen concentration and final lipid proportion in algae cell, and it tell us the approximate trend.
 
</p>
 
</p>
 
 
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
R=A1exp(-B1/ph)-A2exp(-B2/pH)
+
l = k[ln(b(n<sub>s</sub>+a))<sup>-1</sup>] - e
 
</h6>
 
</h6>
 
 
<blockquote>  
+
                      <table>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                        <tr>
R: Co2 productive rate
+
                            <th>Symbol</th>
<br>A1: preexponential factor at i=400 //8.625*10^-5
+
                            <th scope="col">Definition</th>
<br>A2: preexponential factor at i=200 //1.83885*10^-2
+
                            <th scope="col"&>Unit</th>
<br>B1: activation energy at i=400 mol/J //6.45
+
                            <th scope="col"&>Value</th>
<br>B2: activation energy at i=200 mol/J //69.2
+
                        </tr>
</p>
+
                        <tr>
</blockquote>
+
                            <th>l</th>
 +
                            <th>lipid proportion in cell</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>k</th>
 +
                            <th>constant</th>
 +
                            <th>g/100g</th>
 +
                            <th>1.13372</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>b</th>
 +
                              <th>yield coefficient</th>
 +
                              <th>-</th>
 +
                              <th>1.57172</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>n<sub>s</sub></th>
 +
                              <th>initial nitrogen concentration</th>
 +
                              <th>-</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>a</th>
 +
                              <th>correlation  coefficient</th>
 +
                              <th>-</th>
 +
                              <th>2.276</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>a</th>
 +
                              <th>regression constant</th>
 +
                              <th>-</th>
 +
                              <th>0.51653</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>e</th>
 +
                              <th>a perturbation</th>
 +
                              <th>g/100g</th>
 +
                              <th>-55.2776</th>
 +
                        </tr>
 +
 
 +
                      </table>
  
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/3/36/T--NYMU-Taipei--model_ph-rco2.png'  
+
<img src='https://static.igem.org/mediawiki/2017/c/ce/T--NYMU-Taipei--model_nitrogen%2Blipid.png'  
alt='Microalgae productivity in different pH'
+
alt='Nitrogen-lipid plot'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.11 Microalgae productivity in different pH</p>
+
<p style='font-size:20px'>Fig.12 Nitrogen-lipid plot</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight11(this, 910);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight7(this, 1000);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
 
</center>
 
</center>
 +
 
</div>
 
</div>
 
</div>
 
</div>
 
+
<!-- The relation between photosynthetic rate and total yield -->
+
<!-- Out -->
 
<div class='panel'>
 
<div class='panel'>
<div id="s12" class="expandable" style='height: 30px;padding-top:15px;'>
+
<div id="s13" class="expandable" style='height: 30px;padding-top:15px;'>
 
 
<a href="#!" onclick="toggleHeight12(this, 830); return false"  
+
<a href="#!" onclick="toggleHeight13(this, 1900); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
The relation between photosynthetic rate and total yield
+
NrtA exocrine secretion
 
</a>
 
</a>
+
<p>The model tells us that theoretically there is no faster  photosynthetic rate only if more energy be absorbed, so after work with other model, we can establish the relation between photosynthetic rate and total yield for the purpose of best balance.
+
<p>  NrtA is an endocrine secretion protein and this characteristic is a bound to reach our goal because it does not have enough efficiency to make microalgae to produce a significant amount of biofuel. We have tried to turn NrtA into exocrine secretion protein but unfortunately, we didn’t make it in time. If we have successfully transform it into a exocrine secretion protein, and with the help of the connected constitutive promoter, we might have a better result than before theoretically. And this model provide the predictive quantity of change and productivity of new method.
 
</p>
 
</p>
+
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
R=Rmax.e^n/(ke*exp(e.m)+e^n)
+
dr<sub>1</sub>/dt = [1/(1+p<sub>1</sub>/a<sub>1</sub>)]c1p1 - [1/(1+p<sub>2</sub>/b<sub>1</sub>)]v<sub>1</sub>r<sub>1</sub>
 +
<br>
 +
<br>dr<sub>2</sub>/dt = [1/(1+p<sub>2</sub>/a<sub>2</sub>)]c<sub>2</sub>p<sub>1</sub> - [1/(1+p<sub>2</sub>/b<sub>2</sub>)]v<sub>2</sub>r<sub>2</sub>
 +
<br>
 +
<br>dr<sub>3</sub>/dt = [1/(1+p<sub>3</sub>/a<sub>3</sub>)]c<sub>3</sub>p<sub>1</sub> - [1/(1+p<sub>2</sub>/b<sub>3</sub>)]v<sub>3</sub>r<sub>3</sub>
 +
<br>
 +
<br>dp<sub>1</sub>/dt = [1/(1+p<sub>1</sub>/d<sub>1</sub>)]l<sub>1</sub>r<sub>1</sub> - u<sub>1</sub>p<sub>1</sub>
 +
<br>
 +
<br>dp<sub>2</sub>/dt = [1/(1+p<sub>2</sub>/d<sub>2</sub>)]l<sub>2</sub>r<sub>2</sub> - u<sub>2</sub>p<sub>2</sub>
 +
<br>
 +
<br>dp<sub>3</sub>/dt = [1/(1+p<sub>3</sub>/d<sub>3</sub>)]l<sub>3</sub>r<sub>3</sub> - u<sub>3</sub>p<sub>3</sub>
 
</h6>
 
</h6>
 
 
<blockquote>  
+
            <table>
<p style='color:#702828;font-size:16px; font-family:"Roboto Mono", monospace;'>
+
                        <tr>
Rmax: maximum rate mol/g*min //0.000046
+
                            <th>Symbol</th>
<br>e: absorbed energy w/m^2
+
                            <th scope="col">Definition</th>
<br>n: energy exponential constant//1.252
+
                            <th scope="col"&>Unit</th>
<br>ke: productive coefficient uE/(m^2)*s //157.88
+
                            <th scope="col"&>Value</th>
<br>m: constant (m^2)*s /uE//0.0035
+
                        </tr>
</p>
+
                        <tr>
</blockquote>
+
                            <th>Type 1</th>
 +
                            <th>protein initialize others</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>Type 2</th>
 +
                            <th>protein stabilize others</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>Type 3</th>
 +
                              <th>functional protein</th>
 +
                              <th>-</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>t</th>
 +
                              <th>time</th>
 +
                              <th>min</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>r</th>
 +
                              <th>mRNA</th>
 +
                              <th>nMolar</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>p</th>
 +
                              <th>protein</th>
 +
                              <th>nMolar</th>
 +
                              <th>-</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>c</th>
 +
                              <th>relative transcription rate</th>
 +
                              <th>mRNA/(protein·min)</th>
 +
                              <th> 0.03/0.03/0.12</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>l</th>
 +
                              <th>relative translation rate</th>
 +
                              <th>protein/(mRNA·min)</th>
 +
                              <th>2/2/2</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>v</th>
 +
                              <th>relative degradation rates of mRNA</th>
 +
                              <th>min<sup>-1</sup></th>
 +
                              <th>0.03/0.03/0.023</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>u</th>
 +
                              <th>relative degradation rates of proteins</th>
 +
                              <th>min<sup>-1</sup></th>
 +
                              <th>0.15/0.015/0.009</th>
 +
                        </tr>
 +
<tr>
 +
                            <th>an, bn, and dn</th>
 +
                              <th>the effectiveness factors of the respective feedback loops for type n</th>
 +
                              <th>-</th>
 +
                              <th>a1:60
 +
  b1:120
 +
  d1:120 a2:140 b2:140 d2:150 a3:200 b3:140 d3:310</th>
 +
                        </tr>
 +
 +
 
 +
                      </table>
  
 
<p></p>
 
<p></p>
 
<center>
 
<center>
<img src='https://static.igem.org/mediawiki/2017/a/a2/T--NYMU-Taipei--model_e-rco2.png'  
+
<img src='https://static.igem.org/mediawiki/2017/f/fe/T--NYMU-Taipei--model_out.gif'  
alt='The relation between photosynthetic rate and total yield'
+
alt='NrtA exocrine secretion'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>fig.12 The relation between photosynthetic rate and total yield</p>
+
<p style='font-size:20px'>Fig.13 NrtA exocrine secretion
 +
(normal quantity in cell:green;exocrine quantity in cell:yellow;normal productive speed:purple;exocrine productive speed:pink)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
 
 
 
<center>
 
<center>
<a href="#!" onclick="toggleHeight12(this, 830);" style='font-size:20px;color:#2c498c'>
+
<a href="#!" onclick="toggleHeight13(this, 1900);" style='font-size:20px;color:#2c498c'>
 
click to close
 
click to close
 
</a>
 
</a>
Line 815: Line 1,484:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
 +
<h3></h3>
 +
<h3></h3>
 +
<!--reference-->
 +
<div class='panel'>
 +
<div id="s14" class="expandable" style='height: 30px;padding-top:15px;'>
 +
 +
<a href="#!" onclick="toggleHeight14(this, 900); return false"
 +
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 +
Reference
 +
</a>
 +
 +
<div style="font-size:16px;">
 +
<p style="padding-top:5px;"></p>
 +
<ol style="font-size:16px;">
 +
<li>Lars Brammer Nejrup. (2013). Temperature- and light-dependent growth and metabolism of the invasive red algae Gracilaria vermiculophylla – a comparison with two native macroalgae. <i>European journal of phycology</i> (2013), 48(3): 295–308.
 +
<li>Joel C. Goldman, Edward J. Carpenter. (1974). A kinetic approach to the effect of temperature on algal growth. <i>Limnology and Oceanography</i> Volume 19, Issue 5 September 1974 Pages 756–766. DOI: 10.4319/lo.1974.19.5.0756
 +
<li>P. Duarte. (1995). A mechanistic model of the effects of light and temperature on algal primary productivity. <i>Ecological Modelling</i> 82 (1995) 151-160
 +
<li>Ignatius J. Menzies. (2016). Leaf colour polymorphisms: a balance between plant defence and photosynthesis. <i>Journal of Ecology</i> 2016, 104, 104–113
 +
<li>T. A. Costache. (2013). Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. <i>Applied Microbiology and Biotechnology</i> (2013) 97:7627–7637
 +
<li>Bo Kong. (2014). Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model. <i>Bioresource Technology</i> 158 (2014) 141–148
 +
<li>M. A. Mohammad Mirzaie. (2016). Kinetic modeling of mixotrophic growth of Chlorella vulgaris as a new feedstock for biolubricant. <i>Journal of Applied Phycology</i>. DOI 10.1007/s10811-016-0841-4
 +
<li>Junhai Ma. (2012). Stability of a three-species symbiosis model with delays. <i>Nonlinear Dynamics</i> (2012) 67:567–572. DOI:10.1007/s11071-011-0009-3
 +
<li>M. Bekirogullari. (2017). Production of lipid-based fuels and chemicals from microalgae: An integrated experimental and model-based optimization study. <i>Algal Research</i> 23 (2017)  78–87.
 +
<li>JinShui Yang. (2011). Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. <i>Bioresource Technology</i> 102 (2011) 3077–3082
 +
<li>Steven A. Morris. (2003). Analysis of the Lotka–Volterra competition equations as a technological substitution model. <i>Technological Forecasting & Social Change</i> 70 (2003) 103–133
 +
<li>Xian-Ming Shia. (2000). Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. <i>Enzyme and Microbial Technology</i> 27 (2000) 312–318
 +
<li>Aaron Packer. (2011). Growth and neutral lipid synthesis in green microalgae: A mathematical model. <i>Bioresource Technology</i> 102 (2011) 111–117
 +
<li>Joseph Hunt, California State Polytechnic University, Pomona and Loyola Marymount (2005). A Continuous Model of Gene Expression. <i>University Department of Mathematics Technical Report</i> August 2005
 +
</ol>
 +
<p></p>
 +
 +
 +
<center>
 +
<a href="#!" onclick="toggleHeight14(this, 900);" style='font-size:20px;color:#2c498c'>
 +
click to close
 +
</a>
 +
</center>
 +
 +
</div>
 +
</div>
 +
</div>
 +
 +
  
  

Latest revision as of 19:22, 1 November 2017

MODELING

  This year, our modeling focuses on predicting the effect of our modified microbes on productivity. It is an extremely important part to our project because it helps us accurately check and predict information from our experiments that are tested in the wet lab. In our project, there are two essential types of microalgae that play very important roles, Synechococcus PCC7942 and Chlorella vulgaris. The following descriptions will show our success in modeling.

Synechococcus PCC7942

  The modeling from Figure 1 to Figure 5 belongs to the experiments of Synechococcus PCC7942 pigments for better photosynthetic efficiencies. We need to check if another microalgae contains an exogenous pigment that can successfully reach new photosynthesis rate and further increase the proportion of biomass. We already have models about the influence of energy adsorption, but pigments will certainly affect other factors. Therefore, we construct several models that each represents an important factor in the growth and cell composition. Thus, we can determine the best culturing collocation by combining these models.

Chlorella vulgaris

  The modeling from Figure 6 to Figure 13 belongs to the experiments of Chlorella vulgaris for nitrogen starvation. To precisely calculate the timing of starting co-culturing and to ensure there are enough high-affinity E. coli in the bioreactor, we built several models that include the original and new system. They demonstrated the significant improvement of productivity after successfully deprived the microalgae from nitrogen. For instance, one of them provides a variety of information about population when two organisms in the pool start building some relationship.