Team:NYMU-Taipei/Model

MODELING

  This year, our modeling focuses on predicting the effect of our modified microbes on productivity. It is an extremely important part to our project because it helps us accurately check and predict information from our experiments that are tested in the wet lab. In our project, there are two essential types of microalgae that play very important roles, Synechococcus PCC7942 and Chlorella vulgaris. The following descriptions will show our success in modeling.

Synechococcus PCC7942

  The modeling from Figure 1 to Figure 5 belongs to the experiments of Synechococcus PCC7942 pigments for better photosynthetic efficiencies. We need to check if another microalgae contains an exogenous pigment that can successfully reach new photosynthesis rate and further increase the proportion of biomass. We already have models about the influence of energy adsorption, but pigments will certainly affect other factors. Therefore, we construct several models that each represents an important factor in the growth and cell composition. Thus, we can determine the best culturing collocation by combining these models.

Chlorella vulgaris

  The modeling from Figure 6 to Figure 13 belongs to the experiments of Chlorella vulgaris for nitrogen starvation. To precisely calculate the timing of starting co-culturing and to ensure there are enough high-affinity E. coli in the bioreactor, we built several models that include the original and new system. They demonstrated the significant improvement of productivity after successfully deprived the microalgae from nitrogen. For instance, one of them provides a variety of information about population when two organisms in the pool start building some relationship.