Difference between revisions of "Team:Bielefeld-CeBiTec/Achievements"

 
(26 intermediate revisions by 2 users not shown)
Line 5: Line 5:
  
 
<div class="container">
 
<div class="container">
<div id="title" style="background-image: url(https://static.igem.org/mediawiki/2017/7/74/T--Bielefeld-CeBiTec--title-img-centrifuge.jpg);">
+
<div id="title" style="background-image: url(https://static.igem.org/mediawiki/2017/a/a1/T--Bielefeld-CeBiTec--skizze.jpeg);">
 
<img src="https://static.igem.org/mediawiki/2017/7/74/T--Bielefeld-CeBiTec--title-img-centrifuge.jpg">
 
<img src="https://static.igem.org/mediawiki/2017/7/74/T--Bielefeld-CeBiTec--title-img-centrifuge.jpg">
 
<div id="title-bg">
 
<div id="title-bg">
Line 27: Line 27:
 
<div class="third double">
 
<div class="third double">
 
<article><br>
 
<article><br>
<b>Establishment of two orthogonal methods for the detection of unnatural base pairs in a target sequence via <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Software">Oxford Nanopore sequencing</a> and an enzyme based detection method</b>
+
<b>We established two orthogonal methods for the detection of unnatural base pairs in a target sequence: an <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Software">Oxford Nanopore sequencing</a> application and an enzyme based detection method</b>
 
</article>
 
</article>
 
</div>
 
</div>
Line 69: Line 69:
 
<div class="third double">
 
<div class="third double">
 
<article><br><br>
 
<article><br><br>
<b>Proof that certain Taq-polymerases can efficiently <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Results/unnatural_base_pair/preservation_system">incorporate unnatural nucleotides</a> </b>
+
<b>Confirmation that certain Taq DNA polymerases can efficiently <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Results/unnatural_base_pair/preservation_system">incorporate unnatural nucleotides</a> </b>
 
</article>
 
</article>
 
</div>
 
</div>
Line 83: Line 83:
 
<div class="third double">
 
<div class="third double">
 
<article><br><br>
 
<article><br><br>
<b>Construction of a <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Results/toolbox">toolkit</a> consisting of five aminoacyl-tRNA synthetases for incorporation of non-canonical amino acids</b>
+
<b>Construction of a <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Results/toolbox">toolbox</a> consisting of five aminoacyl-tRNA synthetases for incorporation of non-canonical amino acids</b>
 
</article>
 
</article>
 
</div>
 
</div>
 
</div>
 
</div>
  
 +
<div class="contentline">
 +
<div class="third">
 +
<div class="figure small">
 +
<img class="figure image" src="https://static.igem.org/mediawiki/2017/9/94/T--Bielefeld-CeBiTec--YKE_Bingo.png">
 +
<p class="figure subtitle"></p>
 +
</div>
 +
</div>
 +
<div class="third double">
 +
<article><br><br>
 +
<b><a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Results/toolbox/labeling">Colocalization</a> of the RuBisCo and and subcellular compartment (carboxysome) using a fluorescent amino acid</b>
 +
</article>
 +
</div>
 +
</div>         
 +
           
 
<div class="contentline">
 
<div class="contentline">
 
<div class="third">
 
<div class="third">
Line 111: Line 125:
 
<div class="third double">
 
<div class="third double">
 
<article><br>
 
<article><br>
<b>Design and <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Results/toolbox/fusing">chemical synthesis</a> of a novel, fully synthetic amino acid based on cyanonitrobenzothiazol and asparagine and proof of its functionality</b>
+
<b>Design, <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Results/toolbox/fusing">chemical synthesis</a> and proof of functionality of a novel, fully synthetic amino acid based on cyanonitrobenzothiazol and asparagine</b>
 
</article>
 
</article>
 
</div>
 
</div>
Line 181: Line 195:
 
<div class="third double">
 
<div class="third double">
 
<article><br><br>
 
<article><br><br>
<b>Construction of an <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a> for irradiating 96-well microtiter plates, which can be used to manipulate non-canonical amino acids and much more </b>
+
<b>Construction of an <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a> for irradiating 96-well microtiter plates, which can be used to manipulate non-canonical amino acids and for other applications  </b>
 
</article>
 
</article>
 
</div>
 
</div>
Line 209: Line 223:
 
<div class="third double">
 
<div class="third double">
 
<article><br>
 
<article><br>
<b>Writing of a <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/HP/Silver">biosafety report</a> titled “Auxotrophy to Xeno-DNA: A Comprehensive Exploration of Combinatorial Mechanisms for a High-Fidelity Biosafety System” </b>
+
<b>Writing a <a target="_blank" href="https://static.igem.org/mediawiki/2017/1/1e/T--Bielefeld-CeBiTec--DKE_Biosafety_Report.pdf">biosafety report</a> entitled “Auxotrophy to Xeno-DNA: A Comprehensive Exploration of Combinatorial Mechanisms for a High-Fidelity Biosafety System” </b>
 
</article>
 
</article>
 
</div>
 
</div>
Line 223: Line 237:
 
<div class="third double">
 
<div class="third double">
 
<article><br><br>
 
<article><br><br>
<b>Writing of the <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/HP/Gold_Integrated">ChImp Report</a> on the “Chances and Implications of an Expanded Genetic Code”</b>
+
<b>Writing the <a target="_blank" href="https://static.igem.org/mediawiki/2017/1/18/T--Bielefeld-CeBiTec--CMZ-ChImp.pdf">ChImp Report</a> on “Chances and Implications of an Expanded Genetic Code”</b>
 
</article>
 
</article>
 
</div>
 
</div>
Line 233: Line 247:
 
<div class="bevel tr"></div>
 
<div class="bevel tr"></div>
 
<div class="content">
 
<div class="content">
<h2> We applied for the following special prizes </h2>
+
<h2> We Applied for the Following Special Prizes </h2>
                   <h4> Best Integrated Human Practices </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/HP/Gold_Integrated">Best Integrated Human Practices</a> </h4>
 
<article>
 
<article>
Throughout our work, we reached out to experts and the public to constantly fine-tune our project. Early contacts with experts in the field motivated us to host a workshop on “Expanding the Genetic Code” to facilitate discussions on current issues related to our topic. We incorporated these insights by submitting a comprehensive scientific review concerning biosafety issues in iGEM and the science in general. In addition, we created a report on Chances and Implications of an Expanded Genetic Code.
+
Early contacts with experts of various fields motivated us to host a workshop on “Expanding the Genetic Code” to facilitate discussions on current issues related to our topic. We incorporated these insights by submitting a comprehensive scientific review concerning biosafety issues in iGEM and the science in general. In addition, we created a report on Chances and Implications of an Expanded Genetic Code.
 
</article>
 
</article>
                   <h4> Best Education and Public Engagement </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Engagement">Best Education and Public Engagement</a> </h4>
 
<article>
 
<article>
Throughout our project, we explained our topic to the public and the scientific community on multiple occasions and engaged in fruitful discussions. These included iGEM meetups and public events throughout Europe.  Furthermore, we raised awareness for the chances of synthetic biology by cooperating with a number of initiatives and programs, including the “6th CeBiTec Pupils Academy”, “Teutolab Biotechnology”, the street science festival “GENIALE” and through collaboration with the biotechnological student’s initiative btS e.V. By doing so, we were able convince them of the enormous potentials of synthetic biology and to motivate students to pursue studies in the field of synthetic biology.
+
Throughout our project, we explained our topic to the public and the scientific community on multiple occasions and engaged in fruitful discussions. Furthermore, we raised awareness for the chances of synthetic biology by cooperating with many initiatives and programs. This includes the “6th CeBiTec Pupil a number ofs Academy”, “Teutolab Biotechnology”, the street science festival “GENIALE” and through collaboration with the biotechnological student’s initiative btS e.V.
 
</article>
 
</article>
                   <h4> Best Measurement </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Measurement">Best Measurement</a> </h4>
 
<article>
 
<article>
Characterizing parts in accordance with the design, build, and test cycle is one of the essential aspects of iGEM. Our toolbox for the incorporation of non-canonical amino acids provides innovative new methods for the characterization of all protein encoding parts, therefore offering advanced approaches for improved part characterization. The five different tools allow the translational incorporation of non-canonical amino acids, with additional functional groups which can be used to study proteins in vivo and in vitro. With the help of non-canonical amino acids, the subcellular localization of a protein can be investigated. Measurement of intramolecular distances, protein immobilization and light regulation and modification enables sophisticated characterization of parts.
+
Our toolbox for the incorporation of non-canonical amino acids provides innovative new methods for the characterization of all protein encoding parts. With the help of non-canonical amino acids, the subcellular localization of a protein can be investigated. Measurement of intramolecular distances, protein immobilization light regulations and modification enables sophisticated characterizations of parts.
 
</article>
 
</article>
                   <h4> Best Modeling </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Model">Best Modeling</a> </h4>
 
<article>
 
<article>
We developed a cost- and time-efficient way to obtain amino acyl tRNA synthetase sequences for non-canonical amino acids. Via structural prediction combined with recent knowledge from the scientific body, we generated optimized synthetases, which are intended to recognize synthetic amino acids. Specifically, we manually set the necessary constraints within which possible synthetase sequences should be simulated, and selected a set of promising sequences, which we tested and validated in the lab after obtaining them via gene synthesis. This modeling concept demonstrates that protein design for such novel synthetases is possible in silico as a fast and cheap addition to executing the evolution process in the lab. Furthermore, this method provides researchers with many valuable pieces of information, such as the size of the binding site of the protein. This builds the foundation of a promising and powerful alternative to synthetase selection in the lab.
+
Via structural prediction combined with recent scientific knowledge, we generated optimized synthetases, which are intended to recognize synthetic amino acids. This is the foundation of a promising and powerful alternative to synthetase selection in the lab.
 
</article>
 
</article>
                   <h4> Best applied design </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Applied_Design">Best Applied Design</a> </h4>
 
<article>
 
<article>
Terminus independent specific fusion of two or more peptides is a major challenge in synthetic biology and beyond. Inspired by the highly specific condensation reaction of D-luciferin from the firefly Photinus pyralis, we came up with a sophisticated solution, combining organic chemistry, computational modelling, and molecular biology. Based on our own design, we synthesized the novel synthetic amino acid Nγ cyanobenzothiazolyl L asparagine (CBT-asparagine). The cyano group of CBT-asparagine undergoes a condensation reaction with the 1,2-aminothiol group of Nε L cysteinyl L lysine (CL). Through in silico simulation, we predicted different aminoacyl tRNA synthetase sequences to incorporate CBT-asparagine into proteins of interest. This system offers a new way for the production of fusion proteins and polymerized polypeptides.
+
Inspired by the highly specific condensation reaction of D-luciferin from the firefly <i>Photinus pyralis</i>, we came up with the idea to synthesize our own new amino acid, combining organic chemistry, computational modeling, and molecular biology. We designed the novel synthetic amino acid Nγ cyanobenzothiazolyl L asparagine (CBT-asparagine), its cyano group undergoes a condensation reaction with the 1,2-aminothiol group of Nε L cysteinyl L lysine (CL).  
 
</article>
 
</article>
                   <h4> Best Basic Part </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Basic_Part">Best Basic Part</a> </h4>
 
<article>
 
<article>
The broad range nucleotide transporter PtNTT2 from Phaeodactylum tricornutum facilitates the counter exchange of nucleotide triphosphates (NTPs) and nucleoside diphosphates (NDPs), importing NTPs into the plastid. Expressed in E. coli, it allows the uptake of various nucleotides from the cultivation media. This function is essential for the development of a semisynthetic organism, which uses externally provided unnatural nucleotides for replication of its semisynthetic DNA. For our project, we characterized the structure, kinetics, dynamics and subcellular localization of PtNTT2 and different PtNTT2 variants. Therefore, we applied bioinformatic prediction tools, confocal laser scanning microscopy, SDS-PAGE, Western Blot, MALDI-TOF as well as HPLC-MS. All PtNTT2 variants were also cultivated to investigate the effect of PtNTT2 expression on the growth rate. In the future, advanced endosymbiotic systems or novel biosafety mechanisms can be developed based on this part.
+
For our project, we characterized the structure, kinetics, dynamics and subcellular localization of the nucleotide transportter <i>Pt</i>NTT2 and different <i>Pt</i>NTT2 variants. Therefore, we applied bioinformatic prediction tools, confocal laser scanning microscopy, SDS-PAGE, Western Blot, MALDI-TOF as well as HPLC-MS. In the future, advanced endosymbiotic systems or novel biosafety mechanisms can be developed based on this part.
 
</article>
 
</article>
                   <h4> Best Composite Part </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Composite_Part">Best Composite Part</a> </h4>
 
<article>
 
<article>
 
+
This part (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2201373">BBa_K2201373</a>) contains a T3 RNA Polymerase with an inverted mRFP under T3 RNA polymerase control for the enhancing of reporter signals. It is an improved reporter and a genetic circuit that could report even weak expression levels. It was designed based on the model of an amplifier in electrical engineering to intensify an existing input signal and could be used in a broad range of synthetic biology applications.
 
</article>
 
</article>
                   <h4> Best Part Collection </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Part_Collection">Best Part Collection</a> </h4>
 
<article>
 
<article>
Currently, protein design is limited by the chemical properties of the canonical amino acids. Our part collection expands the possibilities for advanced protein design, utilizing novel amino acids with diverse chemical abilities. We provide six different aminoacyl-tRNA synthetases for the translational incorporation of non-canonical amino acids to the iGEM community. As key component of our toolbox, this collection comprises parts for the selection and screening of aminoacyl-tRNA synthetases. To enable the evolution of new aminoacyl-tRNA synthetases, we provided instructions for building randomized aminoacyl-tRNA synthetase libraries. Using our part collection, every iGEM team can evolve their own aminoacyl-tRNA synthetases to incorporate naturally occurring and even fully synthetic non-canonical amino acids. This foundational advance towards rational protein design and engineering leads to innovative tools and applications for synthetic biology.
+
Our part collection expands the possibilities for advanced protein design, utilizing novel amino acids with diverse chemical abilities. We provide six different aminoacyl-tRNA synthetases for the translational incorporation of non-canonical amino acids to the iGEM community.  
 
</article>
 
</article>
                   <h4> Best Software Tool </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Software">Best Software Tool</a> </h4>
 
<article>
 
<article>
Our sophisticated software suite is composed of two connected modules for the analysis of unnatural base pairs in a specified target sequence: M.A.X and iCG. Oxford Nanopore sequencing data is processed by iCG to identify unnatural base pairs in a given target sequence.  As an orthogonal method, our Mutational Analysis Xplorer (M.A.X) utilizes a customized database to find a suitable set of restriction enzymes for our enzyme based detection system. In addition, M.A.X represents a low-cost alternative for the analysis of mutations at a specific position, allowing all iGEM teams to conduct research on unnatural base pairs. Both modules form a powerful software suite, which is extremely helpful for research on unnatural base pairs. Examples are the analysis of mutation frequencies and fidelity of semi-synthetic DNA replication. We postulate that our suite is also applicable for the study of DNA modifications and epigenetics.
+
Our comprehensive software suite is composed of two connected modules for the analysis of unnatural base pairs in a specified target sequence: M.A.X and iCG. We postulate that our suite is also applicable to the study of DNA modifications and epigenetics.
 
</article>
 
</article>
                   <h4> Best Hardware </h4>
+
                   <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">Best Hardware</a> </h4>
 
<article>
 
<article>
We designed and constructed a multifunctional LED panel in a 96-well microtiter plate format through multiple rounds of optimization. This device enables the sophisticated irradiation of samples with a high resolution of light of different wavelengths and intensities. Using our self-written Android application, complex illumination protocols can be programmed and send to the device via bluetooth. We demonstrated and evaluated the functionality by exciting and bleaching GFP and inducing conformational and structural changes of non-canonical amino acids by irradiation at 367 nm and 465 nm. After initial testing, the panel was applied for various crucial experiments. Full documentation and utilization of low cost components enable easy rebuilding, customization and application by other teams. We envision several applications like mutagenesis, surface decontamination, fluorescence studies, opto-genetics, opto-proteomics and photo-biochemistry.
+
We designed and constructed a multifunctional LED panel in a 96-well microtiter plate format through multiple rounds of optimization. This device enables the extensive irradiation of samples with a high resolution of light of different wavelengths and intensities. Using our self-written Android application, complex illumination protocols can be programmed and send to the device via Bluetooth.  
 
</article>
 
</article>
 
</div>
 
</div>
Line 287: Line 301:
 
                   <h3>Integrated Human Practices</h3>
 
                   <h3>Integrated Human Practices</h3>
 
<article>
 
<article>
Throughout our project we got advice and support by over thirty experts that influenced our work very much. We organized a conference about the expansion of the genetic code and wrote a report about the chances and implications of an expanded genetic code. See all the human practices we integrated into our project <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/HP/Gold_Integrated">here</a>.
+
Throughout our project we got advice and support by over thirty experts that influenced our work profoundly. We organized a conference about the expansion of the genetic code and wrote a report about the chances and implications of an expanded genetic code. Find all human practices we integrated into our project <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/HP/Gold_Integrated">here</a>.
</article>
+
                  <h3>Improve a previous part or project</h3>
+
<article>
+
We improved the validation system for aminoacyl-tRNA synthetases for ncAAs from Austin Texas 2014 <a target="_blank" href="http://parts.igem.org/Part:BBa_K1416004">(BBa_K1416004)</a> and Aachen 2016 (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2020040">BBa_K2020040</a>) with a FRET system (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2201343">BBa_K2201343</a>) and used it in our project. You can find our Part Improvement site <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Improve">here</a>.
+
 
</article>
 
</article>
 +
                  <h3>Improve a previous part</h3>
 +
<div class="article">
 +
We improved the validation system for aminoacyl-tRNA synthetases for ncAAs from Austin Texas 2014 <a target="_blank" href="http://parts.igem.org/Part:BBa_K1416004">(BBa_K1416004)</a> and Aachen 2016 (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2020040">BBa_K2020040</a>) with a FRET system (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2201343">BBa_K2201343</a>) and used it in our project. You can find our part improvement site <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Improve">here</a>.
 +
</div>
 
                   <h3>Model your project</h3>
 
                   <h3>Model your project</h3>
 
<article>
 
<article>
We successfully modeled several protein sequences for our synthetases to incorporate the new synthetic non-canonical amino acid CBT-asparagine and 2-nitrophenylalanine. See the results of our modeling <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Model">here</a>.
+
Using ROSETTA, we successfully modeled several protein sequences for our synthetases to incorporate the new synthetic non-canonical amino acid CBT-asparagine and 2-nitrophenylalanine. Find the results of our modeling <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Model">here</a>.
 
</article>
 
</article>
 
                   <h3>Demonstrate your work</h3>
 
                   <h3>Demonstrate your work</h3>
 
<article>
 
<article>
We were able to integrate and detect the unnatural bases in the DNA sequences by software modification of nanopore sequencing. We also expanded the genetic code by providing a toolkit of some evolved synthetases. These are able to incorporate noncanonical amino acids into any kind of protein and proof their functionality. See a summary of our achievements <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Demonstrate">here</a>.
+
We were able to integrate and detect the unnatural bases in the DNA sequences by software modification of Nanopore Sequencing. We also expanded the genetic code by providing a toolbox of some evolved synthetases. These are able to incorporate non-canonical amino acids into any kind of protein and proof their functionality. Find a summary of our achievements <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Demonstrate">here</a>.
 
</article>
 
</article>
 
</div>
 
</div>
Line 313: Line 327:
 
<img class="figure image" src="https://static.igem.org/mediawiki/2017/e/e6/T--Bielefeld-CeBiTec--YKE_medal_silver_icon.png">
 
<img class="figure image" src="https://static.igem.org/mediawiki/2017/e/e6/T--Bielefeld-CeBiTec--YKE_medal_silver_icon.png">
 
<p class="figure subtitle"></p></div>
 
<p class="figure subtitle"></p></div>
                   <h4> Validated Part / Validated Contribution </h4>
+
                   <h4> Validated Part</h4>
 
<article>
 
<article>
In our project we used and created a lot of different parts. We are especially proud of our part <a target="_blank" href="http://parts.igem.org/Part:BBa_K2201004">BBa_K2201004</a> that worked just as expected and was well characterized and validated by us.
+
In our project we used and created various parts. We want to highlight our nucleotide triphosphate transporter part <a target="_blank" href="http://parts.igem.org/Part:BBa_K2201004">BBa_K2201004</a> which functioned just as expected and has been well characterized and validated by us.
 
</article>
 
</article>
 
                   <h4> Collaboration </h4>
 
                   <h4> Collaboration </h4>
 
<article>
 
<article>
Throughout our project we collaborated with many iGEM Teams to improve our work and help each other. Especially our part exchange with the CU Boulder team and the mentoring of the new iGEM team UNIFI was very important for us. See the summary of our collaborations <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Collab">here</a>.
+
Throughout our project we collaborated with many iGEM teams to improve our work and help each other. Especially our part exchange with the CU Boulder team and the mentoring of the new iGEM team UNIFI was very important for us. Find the summary of our collaborations <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Collab">here</a>.
 
</article>
 
</article>
 
                   <h4> Human Practices </h4>
 
                   <h4> Human Practices </h4>
 
<article>
 
<article>
During the last months we had a lot of interactions with the public trying to convey the aspects of our work and project. For example we worked with pupils at the GENIALE or our yearly pupil’s academy and organized a literature workshop about synthetic biology. We had appearances at the radio, created a little biotechnology quiz show for a student initiative and even wrote a biosafety report. All silver human practices are collected <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/HP/Silver">here</a>.
+
During the last months we had a lot of interactions with the public trying to convey all aspects of our work and project. For example we worked with students at the GENIALE or at our institute’s yearly pupil’s academy and organized a literature workshop about synthetic biology. We had appearances at the radio, created a little biotechnology quiz show for a student initiative and wrote a biosafety report. All human practices of the silver category are collected <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/HP/Silver">here</a>.
 
</article>
 
</article>
 
</div>
 
</div>
Line 338: Line 352:
 
                   <h4> Register and attend </h4>
 
                   <h4> Register and attend </h4>
 
                     <article>
 
                     <article>
We registered for the competition in March and are proud to be able to attend the Giant Jamboree. We will without doubt have a lot of fun!
+
We registered for the competition in March and are proud to be able to attend the Giant Jamboree. We are very excited!
 
                     </article>
 
                     </article>
 
                   <h4> Deliverables </h4>
 
                   <h4> Deliverables </h4>
 
<article>
 
<article>
We have met all the required deliverables as you can see in our team wiki, our project attribution, our team poster, our presentation on the 12th of november, our <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Safety">safety</a> and judging forms, our part page and our submitted samples.
+
We have done all the required deliverables as you can see in our team wiki, our project attribution, our team poster, our presentation on the 12<sup>th</sup> of november, our <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Safety">safety</a> and judging forms, our part page and our submitted samples.
 
</article>
 
</article>
 
                   <h4> Attribution </h4>
 
                   <h4> Attribution </h4>
 
                     <article>
 
                     <article>
We created an <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Attributions">Attribution</a> site where we listed and thanked all the people who supported us with advice and material throughout our project. If not mentioned specificially we have done the work ourselfs and the results are due to our own work.
+
We created an <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Attributions">attribution</a> site where we listed and thanked all the people who supported us with advice and material throughout our project. If not mentioned specifically we have performed the work ourselves and the results are due to our own work.
 
                     </article>
 
                     </article>
                   <h4> Characterization / Contribution </h4>
+
                   <h4> Characterization</h4>
                     <article>
+
                     <div class="article">
We characterized a lot of different parts and successfully participated at the <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/InterLab"> Interlab Measurement Study </a>.</article>
+
We characterized various <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Parts">parts</a> and successfully participated at the <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/InterLab"> Interlab Measurement Study </a>.</div>
 
</div>
 
</div>
 
<div class="bevel bl"></div>
 
<div class="bevel bl"></div>

Latest revision as of 03:49, 2 November 2017

Achievements


We established two orthogonal methods for the detection of unnatural base pairs in a target sequence: an Oxford Nanopore sequencing application and an enzyme based detection method



Development of a software suite for these orthogonal methods


Integration and characterization of the nucleotide transporter PtNTT2 from P.tricornutum in E.coli for the uptake of unnatural nucleoside triphosphates



Construction of a toolbox consisting of five aminoacyl-tRNA synthetases for incorporation of non-canonical amino acids



Colocalization of the RuBisCo and and subcellular compartment (carboxysome) using a fluorescent amino acid


Design, chemical synthesis and proof of functionality of a novel, fully synthetic amino acid based on cyanonitrobenzothiazol and asparagine



Modeling more than ten new aaRS sequences



Library development with several hundred thousand sequences for selecting aminoacyl-tRNA synthetases


Construction of positive and negative selection plasmids for the evolution of new synthetases for non-canonical amino acids



Improvement of an aminoacyl-tRNA synthetase test-system by introducing a FRET-system and development of a ranking system



Construction of an LED panel for irradiating 96-well microtiter plates, which can be used to manipulate non-canonical amino acids and for other applications



Development of an Android App to control the LED panel with your smartphone via Bluetooth


Writing a biosafety report entitled “Auxotrophy to Xeno-DNA: A Comprehensive Exploration of Combinatorial Mechanisms for a High-Fidelity Biosafety System”



Writing the ChImp Report on “Chances and Implications of an Expanded Genetic Code”

We Applied for the Following Special Prizes

Best Integrated Human Practices

Early contacts with experts of various fields motivated us to host a workshop on “Expanding the Genetic Code” to facilitate discussions on current issues related to our topic. We incorporated these insights by submitting a comprehensive scientific review concerning biosafety issues in iGEM and the science in general. In addition, we created a report on Chances and Implications of an Expanded Genetic Code.

Best Education and Public Engagement

Throughout our project, we explained our topic to the public and the scientific community on multiple occasions and engaged in fruitful discussions. Furthermore, we raised awareness for the chances of synthetic biology by cooperating with many initiatives and programs. This includes the “6th CeBiTec Pupil a number ofs Academy”, “Teutolab Biotechnology”, the street science festival “GENIALE” and through collaboration with the biotechnological student’s initiative btS e.V.

Best Measurement

Our toolbox for the incorporation of non-canonical amino acids provides innovative new methods for the characterization of all protein encoding parts. With the help of non-canonical amino acids, the subcellular localization of a protein can be investigated. Measurement of intramolecular distances, protein immobilization light regulations and modification enables sophisticated characterizations of parts.

Best Modeling

Via structural prediction combined with recent scientific knowledge, we generated optimized synthetases, which are intended to recognize synthetic amino acids. This is the foundation of a promising and powerful alternative to synthetase selection in the lab.

Best Applied Design

Inspired by the highly specific condensation reaction of D-luciferin from the firefly Photinus pyralis, we came up with the idea to synthesize our own new amino acid, combining organic chemistry, computational modeling, and molecular biology. We designed the novel synthetic amino acid Nγ cyanobenzothiazolyl L asparagine (CBT-asparagine), its cyano group undergoes a condensation reaction with the 1,2-aminothiol group of Nε L cysteinyl L lysine (CL).

Best Basic Part

For our project, we characterized the structure, kinetics, dynamics and subcellular localization of the nucleotide transportter PtNTT2 and different PtNTT2 variants. Therefore, we applied bioinformatic prediction tools, confocal laser scanning microscopy, SDS-PAGE, Western Blot, MALDI-TOF as well as HPLC-MS. In the future, advanced endosymbiotic systems or novel biosafety mechanisms can be developed based on this part.

Best Composite Part

This part (BBa_K2201373) contains a T3 RNA Polymerase with an inverted mRFP under T3 RNA polymerase control for the enhancing of reporter signals. It is an improved reporter and a genetic circuit that could report even weak expression levels. It was designed based on the model of an amplifier in electrical engineering to intensify an existing input signal and could be used in a broad range of synthetic biology applications.

Best Part Collection

Our part collection expands the possibilities for advanced protein design, utilizing novel amino acids with diverse chemical abilities. We provide six different aminoacyl-tRNA synthetases for the translational incorporation of non-canonical amino acids to the iGEM community.

Best Software Tool

Our comprehensive software suite is composed of two connected modules for the analysis of unnatural base pairs in a specified target sequence: M.A.X and iCG. We postulate that our suite is also applicable to the study of DNA modifications and epigenetics.

Best Hardware

We designed and constructed a multifunctional LED panel in a 96-well microtiter plate format through multiple rounds of optimization. This device enables the extensive irradiation of samples with a high resolution of light of different wavelengths and intensities. Using our self-written Android application, complex illumination protocols can be programmed and send to the device via Bluetooth.

Integrated Human Practices

Throughout our project we got advice and support by over thirty experts that influenced our work profoundly. We organized a conference about the expansion of the genetic code and wrote a report about the chances and implications of an expanded genetic code. Find all human practices we integrated into our project here.

Improve a previous part

We improved the validation system for aminoacyl-tRNA synthetases for ncAAs from Austin Texas 2014 (BBa_K1416004) and Aachen 2016 (BBa_K2020040) with a FRET system (BBa_K2201343) and used it in our project. You can find our part improvement site here.

Model your project

Using ROSETTA, we successfully modeled several protein sequences for our synthetases to incorporate the new synthetic non-canonical amino acid CBT-asparagine and 2-nitrophenylalanine. Find the results of our modeling here.

Demonstrate your work

We were able to integrate and detect the unnatural bases in the DNA sequences by software modification of Nanopore Sequencing. We also expanded the genetic code by providing a toolbox of some evolved synthetases. These are able to incorporate non-canonical amino acids into any kind of protein and proof their functionality. Find a summary of our achievements here.

Validated Part

In our project we used and created various parts. We want to highlight our nucleotide triphosphate transporter part BBa_K2201004 which functioned just as expected and has been well characterized and validated by us.

Collaboration

Throughout our project we collaborated with many iGEM teams to improve our work and help each other. Especially our part exchange with the CU Boulder team and the mentoring of the new iGEM team UNIFI was very important for us. Find the summary of our collaborations here.

Human Practices

During the last months we had a lot of interactions with the public trying to convey all aspects of our work and project. For example we worked with students at the GENIALE or at our institute’s yearly pupil’s academy and organized a literature workshop about synthetic biology. We had appearances at the radio, created a little biotechnology quiz show for a student initiative and wrote a biosafety report. All human practices of the silver category are collected here.

Register and attend

We registered for the competition in March and are proud to be able to attend the Giant Jamboree. We are very excited!

Deliverables

We have done all the required deliverables as you can see in our team wiki, our project attribution, our team poster, our presentation on the 12th of november, our safety and judging forms, our part page and our submitted samples.

Attribution

We created an attribution site where we listed and thanked all the people who supported us with advice and material throughout our project. If not mentioned specifically we have performed the work ourselves and the results are due to our own work.

Characterization

We characterized various parts and successfully participated at the Interlab Measurement Study .