Difference between revisions of "Team:Sydney Australia/Design"

Line 984: Line 984:
 
<div class = "divider1"></div>
 
<div class = "divider1"></div>
 
<br>
 
<br>
<h4> Blurb about purification.</h4>
+
<h4> Blurb about purification.
 +
<br> An additional factor in the purification of our insulins is the need for proteases to remove the 6x His sequence and the expression tags. This step reduces the efficiency of the nickel column method, as a decreased amount of insulin is eluted. Taking this into consideration, along with the increased expense of the nickel column method, our team decided to use the nickel agarose resin method for insulin purification. </h4>
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 08:50, 1 November 2017

Our Key Goals


The aim of the USYD iGEM 2017 team was to address the problem of insulin inaccessibility. The design of our insulin, and its means of expression, needed to look at five key characteristics:

Stability

For our project to work effectively, we must have a supply chain that’s not a cold chain, so that costs can be reduced. This will ultimately mean that the cost of these cold chains will not be passed onto the consumer. To achieve this, we hope to design an insulin that will not lose efficacy after being exposed to room temperature for long periods of time.

Single Chained

As a result of the difficult purification methods, Single Chain Insulins, or SCIs for short, have been developed with a small, C-peptide chain linker. This linker connects the A and B chains in such a way that the di-sulfide bonds form more favorably. We aim to develop our own single chain insulin to compare it’s simplicity.

Ease of Purification and Affordaility

We must also consider the impact of a difficult, costly manufacturing process on small scale manufacturing companies. This impact is too great to impose on this grass-roots organisations, so we have pursued to find a cheap, simple purification method which is able to produce high yields from a recombinant system.

Intellectual Property Issues

As a result of the way drugs are currently developed, all new inventions for therapies are protected by Intellectual Property Law through patents. These patents surrounding all currently prescribed and newly invented insulins has inspired our team to pursue a completely open source project.

Safety and Efficacy

Our insulin products must be of certifiable medical grade such that it can be approved for human use after stage IV clinical trials, or biosimilar clinical trials. Furthermore, it must also be at least as effective as the other insulins on the market.

Our Constructs


We designed our expression constructs in order to meet these goals. Click on each element of the construct to learn more about why we chose them:

Winsulin secreted by B. subtilis

BB prefix

RBS

YNCM Tag

His Tag

TEV

Winsulin

BB suffix

Proinsulin secreted by B. subtilis

BB prefix

RBS

YNCM Tag

His Tag

R

Proinsulin

BB suffix

Winsulin targeted to the periplasm of E. coli

BB prefix

RBS

Ecotin Tag

His Tag

TEV

Winsulin

BB suffix

Proinsulin targeted to the periplasm of E. coli

BB prefix

RBS

Ecotin Tag

His Tag

R

Proinsulin

BB suffix

Winsulin targeted to the cytoplasm of E. coli

BB prefix

RBS

His Tag

TEV

Winsulin

BB suffix

Proinsulin targeted to the cytoplasm of E. coli

BB prefix

RBS

His Tag

R

Proinsulin

BB suffix

iGEM BioBrick Prefix

Contains the restriction sites that are necessary for BioBrick compatibility including EcoRI, NotI & XbaI.

E. coli Extended Ribosome Binding Site

A derivative of the RBS found in gene 10 of the T7 bacteriophage, this 23 base pair sequence rich in A’s & T’s enhances ribosome binding to boost expression.

YncM Tag

The YNCM tag is a 12 amino acid sequence whose presence on the N-terminus of the protein targets it for secretion out of the cell into the surrounding media via the Sec pathway in Bacillus subtilis. YNCM was chosen because it was recently shown to be massively successful in targeting recombinant protein for secretion compared to a library of other signal peptides. Additionally, this was shown in B. subtilis strain WB600, which is the bacteria that our WB800 strain was derived from. So we expect that it should give us similar success in secretion of our constructs. (Guan et. al. 2016)

His Tag

We have included a tag comprised of 6 sequential histidines that form a vital aspect of our purification technique using affinity chromatography. Histidine’s high attraction to metal ions will cause the entire protein, insulin and all, to bind to a nickel column and separate it from the other proteins of the cell.

TEV Protease Cleavage Site

TEV is a sequence-specific cysteine protease derived from Tobacco Etch Virus. Because of its high specificity, it is commonly used for deliberate protein cleavage. In our project, we will use it to exclusively detach Winsulin from the nickel column, leaving the his tag and Ecotin/YNCM tags behind. This should provide us with a pure elution of Winsulin.

“R” Arginine Cleavage Site

Arginine acts as a recognition site for Trypsin Protease which we will use to specifically remove Proinsulin from the his tag and YNCM/Ecotin tag in a similar way to TEV. We have chosen to use Trypsin in these constructs because it allows us to further simplify the processing of proinsulin. Trypsin naturally cleaves the C-peptide from proinsulin which, following disulfide bond formation, leaves the active form of insulin. This is the way it works in our body, so we are confident that it will work here too.

iGEM BioBrick Suffix

Contains the restriction sites that are necessary for BioBrick compatibility including SpeI, NotI & PstI. We have also added an additional BamHI site at the terminus of our E. coli expressed constructs for ligation into pET-15b.

Ecotin Tag

Ecotin acts as a signal sequence to target the translated protein to the periplasm of the cell. There are a number of advantages that make it a good choice over other tags.

  • Relatively low metabolic burden due to its small size
  • No interaction with other proteins within the periplasm
  • Is native in E. coli and contains a disulfide bond meaning it undergoes through an oxidative compartment that may assist in the formation of the disulfides in Proinsulin and Winsulin.
  • It has already been shown to successfully target proinsulin to the periplasm (Malik et. al. 2007)

Our Expression Systems


In order to maximise the yield of our insulin, while also reducing the post-expression methods currently undertaken by manufacturers, we tested both of these constructs in three different expression systems. Two of these expression systems were in BL21 E. coli, and the other was in Bacillus subtilis.

Cytoplasmic Expression

Cytoplasmic expression is our recombinant protein production in its raw and simple form. With no tags attached to the fusion protein, both Winsulin and Proinsulin will accumulate within the cytoplasm to form aggregated inclusion bodies. Extraction will involve complete lysis of the cell and purification will require separating them from DNA, membranes and other proteins.
The reason to express in the cytoplasm is mainly to compare to our other expression systems in order to see whether they are a viable means of production.

Periplasmic Expression

Potentially the biggest hurdle to overcome in efficiently producing recombinant insulin is having the three disulfide bonds in proinsulin and active insulin form correctly. This is because they require an oxidative environment that isn’t usually found in the cytoplasm of common protein factories like E. coli where proteins are naturally expressed.
Fortunately, the periplasmic compartment of gram negative bacteria, including E. coli is more oxidative than the cytoplasm and will therefore improve disulfide bond formation. So we are using the Ecotin tag to target proinsulin and Winsulin to the periplasm in the hope that they will fold correctly and form the correct disulfides.
This method also has the additional advantage that the periplasmic fraction can be extracted without lysing the entire cell, separating our insulin from cells DNA and the rest of the cytoplasmic “junk”.

Figure 1. Details of E. Coli cytoplasmic expression of pro/winsulin
Figure 2. Details of E. Coli periplasmic expression of pro/winsulin

Secretory Expression

Current methods of insulin production grow bacteria in huge vats. But bacteria like E. coli that only express the protein in the cytoplasm need to be lysed to extract it. Which means they need to drain hundreds of thousands of liters of culture to separate the cells from the media before lysing the cells and then purifying insulin from the DNA and other cellular proteins. Although we will be testing cytoplasmic E. coli expression similar to these methods, we wanted to come up with a way to efficiently separate our insulin from the cells and decided the best way would be have it secreted directly into the media. This is where Bacillus subtilis comes in! Bacillus has been a common tool for recombinant protein production for years and has been proven again and again that they are highly efficient secretion factories. The hope is that having the insulin separated from the cells in the media would mean that scaled up production could use a system where the media is constantly cycled out and the cells can continuously produce our insulin. As can be seen in Figure 3, expression using B. Subtilis can be very simple contributing to our goal to create an easily purifiable product.

Figure 3. Details of expression of pro/winsulin in B. Subtilis

Our Purification Process


Blurb about purification.
An additional factor in the purification of our insulins is the need for proteases to remove the 6x His sequence and the expression tags. This step reduces the efficiency of the nickel column method, as a decreased amount of insulin is eluted. Taking this into consideration, along with the increased expense of the nickel column method, our team decided to use the nickel agarose resin method for insulin purification.

Figure 4. Purification process

Additional Solutions


??


WB800 Bacillus Strain


One of the challenges that we found in the literature of producing recombinant insulin was its susceptibility to proteolytic decay. So to continue with the theme of maximising expression, it would make sense to reduce the effect of proteolytic decay.

Our idea: knockout proteases from an existing strain such as B. subtilis 168.

Our actual solution: find one that already exists.

And hence we discovered B. subtilis WB800. It is one of the more recent of a long line of protease deficient strains of Bacillus subtilis that have been optimised for recombinant protein secretion (Figure 5).

WB800 specifically has 8 proteases knocked that include both intracellular and membrane bound. The strain was kindly provided to us for experimental use by Professor Sui-Lam Wong of the University of Calgary, Canada.

Figure 5. WB800 protease knockout strain