Team:Potsdam/Protocols

No Sidebar - Escape Velocity by HTML5 UP

Our research work

Research work


Finding a suitable topic was very challenging and time consuming. Initially, we looked through projects of prior teams and assembled a list of possible topics.

A big influence was a new method for assembling genes in a manufacturing manner which was being developed by a research group on our university. Based on the quick and easy synthesis of proteins a first idea was the creation of enzymes that could convert blood groups. Also working with cyanobacteria was an option we considered.

After many seminars, we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membraneless organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.

We thought about using either violacein or beta carotene as exemplary pathways for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in E. coli.

Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.

But all the planning was for nothing when we realized that some of the enzymes of the beta carotene pathway were localized in the membrane and therefore not suitable for our metabolic channeling approach.

After planning the design more precise we eventually arrived at our scaffold design of a low and a high-copy plasmid.

Protocols