Difference between revisions of "Team:Cologne-Duesseldorf/Eric"

Line 18: Line 18:
 
</li>
 
</li>
 
</ul>
 
</ul>
 +
<br>
 +
<br>
 
<br>
 
<br>
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
Line 31: Line 33:
  
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
 
+
<br>
 +
<br>
 +
<br>
 
<ul>
 
<ul>
 
<li>
 
<li>
Line 38: Line 42:
 
</ul>
 
</ul>
  
 +
<br>
 +
<br>
 
<br>
 
<br>
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
Line 45: Line 51:
 
Via fluorescence microscopy we verified that the integration of new membrane proteins into the peroxisomal membrane is possible.
 
Via fluorescence microscopy we verified that the integration of new membrane proteins into the peroxisomal membrane is possible.
  
 +
<br>
 +
<br>
 
<br>
 
<br>
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
Line 54: Line 62:
 
</ul>
 
</ul>
  
 +
<br>
 +
<br>
 
<br>
 
<br>
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
Line 63: Line 73:
 
</ul>
 
</ul>
  
 +
<br>
 +
<br>
 
<br>
 
<br>
  
Line 73: Line 85:
 
</ul>
 
</ul>
  
 
+
<br>
 +
<br>
 
<br>
 
<br>
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
Line 83: Line 96:
 
</ul>
 
</ul>
  
 +
<br>
 +
<br>
 
<br>
 
<br>
  
Line 94: Line 109:
  
  
 +
<br>
 +
<br>
 
<br>
 
<br>
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">
 
<img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">

Revision as of 19:00, 1 November 2017




  • We were able to design and successfully test an orthogonal peroxisomal protein import mechanism for the peroxisome in S. cerevisiae.



  • By decorating the peroxisomes with the v-SNARE Snc1 we successfully secreted their entire contents




  • With two different sensors we were able to efficiently measure the pH and the redox potential inside our yeast peroxisomes.



  • Via fluorescence microscopy we verified that the integration of new membrane proteins into the peroxisomal membrane is possible.


    • By successfully translocating the required enzymes for the metabolic pathways of nootkatone and violacein into the peroxisome and actually synthesizing the latter, we developed a proof of concept for our toolbox



    • We successfully implemented a way of customizing the size and number of the peroxisomes into our toolbox.



    • With a high throughput assay we characterized the import efficiency of different PTS2 sequences.



    • To get a better understanding of possible problems and pitfalls of our metabolic engineering concepts we extensively modeled the whole nootkatone pathway and the benefits of it being translocated inside our compartment.



    • For our planned optogenetic experiments we designed an affordable lightbox which can easily be assembled in a short time.



    • All our excellent results can be combined into a highly variable compartment toolbox for designing artificial compartments based on the peroxisomes in S. cerevisiae with an enormous range of applications.