Difference between revisions of "Team:Dartmouth"

Line 16: Line 16:
 
<div class="column full_size">
 
<div class="column full_size">
 
<h2> Project Description </h2>
 
<h2> Project Description </h2>
<p>With increasing attention on the development of biofuels, it is imperative to develop more efficient means of ethanol production. Since the current method of ethanol production using yeast can be slow and expensive, we intend to maximize the amount of ethanol production using bacteria. Multiple species of bacteria will be tested for the amount of ethanol production following transformation using a well-characterized vector, pLOI297, that codes for PDC and ADH genes.  
+
<p1>With increasing attention on the development of biofuels, it is imperative to develop more efficient means of ethanol production. Since the current method of ethanol production using yeast can be slow and expensive, we intend to maximize the amount of ethanol production using bacteria. Multiple species of bacteria will be tested for the amount of ethanol production following transformation using a well-characterized vector, pLOI297, that codes for PDC and ADH genes.</p1>
  
Ethanol holds promise as an easily sources biofuel in light of recent advances in biochemical techniques and recombinant genetics. As a hallmark of reduced-carbon footprint biofuels, ethanol is already incorporated as a regulation percentage of most commercial fuels. Initially, ethanol was harvested as a byproduct of yeast catalyzed fermentation of corn. While yeast produces high conversion yields, ethanol synthesis based on corn lead to elevated prices in fuel, animal fodder, and human consumables. On the other hand, ethanol synthesis via bacteria replaces corn with other fuel sources, such as cellulose, the most abundant bio-material on the planet. While current techniques in bacteria mediated ethanol synthesis do not quite meet yeast-standards in terms of conversion yield, bacteria-based mechanisms have greater versatility in cultivation environments, potential for recombinant enhancement, and rate of ethanol conversion.
+
<p>
 +
</p>
  
 +
<p2>Ethanol holds promise as an easily sources biofuel in light of recent advances in biochemical techniques and recombinant genetics. As a hallmark of reduced-carbon footprint biofuels, ethanol is already incorporated as a regulation percentage of most commercial fuels. Initially, ethanol was harvested as a byproduct of yeast catalyzed fermentation of corn. While yeast produces high conversion yields, ethanol synthesis based on corn lead to elevated prices in fuel, animal fodder, and human consumables. On the other hand, ethanol synthesis via bacteria replaces corn with other fuel sources, such as cellulose, the most abundant bio-material on the planet. While current techniques in bacteria mediated ethanol synthesis do not quite meet yeast-standards in terms of conversion yield, bacteria-based mechanisms have greater versatility in cultivation environments, potential for recombinant enhancement, and rate of ethanol conversion.</p2>
  
Figure 4. Reoxidation of NADH via the alcoholic fermentation pathway in Saccharomyces cerevisiae. Pdc, pyruvate decarboxylase; Adh, alcohol dyhdrogenase.
+
<p>
https://marcelf.home.xs4all.nl/GeneralIntroduction.htm
+
</p>
  
Pyruvate decarboxylase (referred to as PDC) is a homotetrameric enzyme. In an anaerobic environment, the PDC enzyme catalyzes the decarboxylation of pyruvic acid to acetaldehyde and carbon dioxide. This is a critical step in the fermentation process for many organisms. As a result, research has been conducted into incorporating PDC from organisms such as Saccharomyces cerevisiae into other bacteria to improve their ethanol yields. These bacteria offer advantages over yeast organisms due to faster growth times, different food sources and growing environments. In addition, prokaryotic bacteria are easier to genetically modify than eukaryotic yeast.
+
<img src="https://marcelf.home.xs4all.nl/Thesis/H1/Fig4.gif">
 +
<p3>Figure 4. Reoxidation of NADH via the alcoholic fermentation pathway in Saccharomyces cerevisiae. Pdc, pyruvate decarboxylase; Adh, alcohol dyhdrogenase.
 +
https://marcelf.home.xs4all.nl/GeneralIntroduction.htm</p3>
  
The goal of this project is to screen a series of bacteria for compatibility with PDC gene integration, expression and increased ethanol production. The bacteria selected for screening come from a diverse range of environments and niche properties. These would allow for ethanol production from sources other than sugar produced from human consumable foodstuffs and allow for cheaper and less disruptive ethanol production. One bacteria, Ralstonia eutropha for example is able to process biodegradable plastics and will be a particularly interesting research topic. Another bacteria, Geobacillus stearothermophilus, is also particularly interesting in that it will thrive in extreme conditions, which would be ideal for projects requiring sterile environments as the high growing temperatures would eliminate most contaminations.</p>
+
<p>
 +
</p>
 +
 
 +
<p4>Pyruvate decarboxylase (referred to as PDC) is a homotetrameric enzyme. In an anaerobic environment, the PDC enzyme catalyzes the decarboxylation of pyruvic acid to acetaldehyde and carbon dioxide. This is a critical step in the fermentation process for many organisms. As a result, research has been conducted into incorporating PDC from organisms such as Saccharomyces cerevisiae into other bacteria to improve their ethanol yields. These bacteria offer advantages over yeast organisms due to faster growth times, different food sources and growing environments. In addition, prokaryotic bacteria are easier to genetically modify than eukaryotic yeast.</p4>
 +
 
 +
<p>
 +
</p>
 +
 
 +
<p5>The goal of this project is to screen a series of bacteria for compatibility with PDC gene integration, expression and increased ethanol production. The bacteria selected for screening come from a diverse range of environments and niche properties. These would allow for ethanol production from sources other than sugar produced from human consumable foodstuffs and allow for cheaper and less disruptive ethanol production. One bacteria, Ralstonia eutropha for example is able to process biodegradable plastics and will be a particularly interesting research topic. Another bacteria, Geobacillus stearothermophilus, is also particularly interesting in that it will thrive in extreme conditions, which would be ideal for projects requiring sterile environments as the high growing temperatures would eliminate most contaminations.</p5>
 +
</div>
  
 
<div class="clear"></div>
 
<div class="clear"></div>

Revision as of 02:09, 28 June 2017

Dartmouth

Welcome to Dartmouth iGEM!

we r cool kidz

Project Description

With increasing attention on the development of biofuels, it is imperative to develop more efficient means of ethanol production. Since the current method of ethanol production using yeast can be slow and expensive, we intend to maximize the amount of ethanol production using bacteria. Multiple species of bacteria will be tested for the amount of ethanol production following transformation using a well-characterized vector, pLOI297, that codes for PDC and ADH genes.

Ethanol holds promise as an easily sources biofuel in light of recent advances in biochemical techniques and recombinant genetics. As a hallmark of reduced-carbon footprint biofuels, ethanol is already incorporated as a regulation percentage of most commercial fuels. Initially, ethanol was harvested as a byproduct of yeast catalyzed fermentation of corn. While yeast produces high conversion yields, ethanol synthesis based on corn lead to elevated prices in fuel, animal fodder, and human consumables. On the other hand, ethanol synthesis via bacteria replaces corn with other fuel sources, such as cellulose, the most abundant bio-material on the planet. While current techniques in bacteria mediated ethanol synthesis do not quite meet yeast-standards in terms of conversion yield, bacteria-based mechanisms have greater versatility in cultivation environments, potential for recombinant enhancement, and rate of ethanol conversion.

Figure 4. Reoxidation of NADH via the alcoholic fermentation pathway in Saccharomyces cerevisiae. Pdc, pyruvate decarboxylase; Adh, alcohol dyhdrogenase. https://marcelf.home.xs4all.nl/GeneralIntroduction.htm

Pyruvate decarboxylase (referred to as PDC) is a homotetrameric enzyme. In an anaerobic environment, the PDC enzyme catalyzes the decarboxylation of pyruvic acid to acetaldehyde and carbon dioxide. This is a critical step in the fermentation process for many organisms. As a result, research has been conducted into incorporating PDC from organisms such as Saccharomyces cerevisiae into other bacteria to improve their ethanol yields. These bacteria offer advantages over yeast organisms due to faster growth times, different food sources and growing environments. In addition, prokaryotic bacteria are easier to genetically modify than eukaryotic yeast.

The goal of this project is to screen a series of bacteria for compatibility with PDC gene integration, expression and increased ethanol production. The bacteria selected for screening come from a diverse range of environments and niche properties. These would allow for ethanol production from sources other than sugar produced from human consumable foodstuffs and allow for cheaper and less disruptive ethanol production. One bacteria, Ralstonia eutropha for example is able to process biodegradable plastics and will be a particularly interesting research topic. Another bacteria, Geobacillus stearothermophilus, is also particularly interesting in that it will thrive in extreme conditions, which would be ideal for projects requiring sterile environments as the high growing temperatures would eliminate most contaminations.
Before you start:

Please read the following pages:

Styling your wiki

You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.

While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.

Wiki template information

We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the Pages for awards link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!

Editing your wiki

On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world!

Use WikiTools - Edit in the black menu bar to edit this page

Tips

This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started:

  • State your accomplishments! Tell people what you have achieved from the start.
  • Be clear about what you are doing and how you plan to do this.
  • You have a global audience! Consider the different backgrounds that your users come from.
  • Make sure information is easy to find; nothing should be more than 3 clicks away.
  • Avoid using very small fonts and low contrast colors; information should be easy to read.
  • Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the iGEM 2017 calendar
  • Have lots of fun!
Inspiration

You can also view other team wikis for inspiration! Here are some examples:

Uploading pictures and files

You can upload your pictures and files to the iGEM 2017 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name.
When you upload, set the "Destination Filename" to
T--YourOfficialTeamName--NameOfFile.jpg. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)

UPLOAD FILES