Difference between revisions of "Team:NYMU-Taipei/Model"

 
(13 intermediate revisions by 3 users not shown)
Line 262: Line 262:
 
<!-- Abstract -->
 
<!-- Abstract -->
 
<div class='model_wrapper'>
 
<div class='model_wrapper'>
<p>  This year, our modeling focuses on predicting the result of our modified microbes’ effect on productivity. It is an extremely important part to our project, because it helps us accurately check and predict some information of the experiments, which are worked in the wet lab. In our project, there are two essential types of microalgae that play very important roles, <i>Synechococcus PCC7942</i> and <i>Chlorella vulgaris</i>. The following will show our success in modeling.
+
<p>  This year, our modeling focuses on predicting the effect of our modified microbes on productivity. It is an extremely important part to our project because it helps us accurately check and predict information from our experiments that are tested in the wet lab. In our project, there are two essential types of microalgae that play very important roles, <i>Synechococcus PCC7942</i> and <i>Chlorella vulgaris</i>. The following descriptions will show our success in modeling.
 
</p>
 
</p>
 
</div>
 
</div>
Line 270: Line 270:
 
<h1><i>Synechococcus PCC7942</i></h1>
 
<h1><i>Synechococcus PCC7942</i></h1>
 
<div class='model_wrapper' >
 
<div class='model_wrapper' >
<p>  The modeling from figure 1 to figure 5 belongs to the experiments of <i>Synechococcus PCC7942</i> pigments for better photosynthetic efficiencies. We need to check if another microalgae, which contains exogenous pigment, can successfully reach new photosynthesis rate, and further increase biomass proportion. We already have models about the influence of energy adsorption, but pigments will certainly affect other factors. Therefore, we construct several models that each represents an important factor on growth and cell composition. Importantly, we can determine the best culturing collocation by combining these models.
+
<p>  The modeling from Figure 1 to Figure 5 belongs to the experiments of <i>Synechococcus PCC7942</i> pigments for better photosynthetic efficiencies. We need to check if another microalgae contains an exogenous pigment that can successfully reach new photosynthesis rate and further increase the proportion of biomass. We already have models about the influence of energy adsorption, but pigments will certainly affect other factors. Therefore, we construct several models that each represents an important factor in the growth and cell composition. Thus, we can determine the best culturing collocation by combining these models.
 
</p>
 
</p>
 
</div>
 
</div>
Line 283: Line 283:
 
</a>
 
</a>
 
 
<p>  We want to use pigments to enhance the photosynthesis rate. Different pigments absorb different wavelength of sunlight, and bring about different irradiance,body temperature, and photosynthesis rate. These two models show the influence of irradiance and temperature on photosynthesis rate.
+
<p>  We want to use pigments to enhance the photosynthesis rate. Different pigment absorbs different wavelength of sunlight and bring about different irradiance, body temperature, and photosynthesis rate. These two models show the influence of irradiance and temperature on photosynthesis rate.
 
</p>
 
</p>
 
 
Line 416: Line 416:
 
</a>
 
</a>
 
 
<p>  The simplified graph from sunshine distribution is used to calculate how much energy is absorbed by each pigment approximately, and help us know the photon adsorption amount after conversion.
+
<p>  The simplified graph from sunshine distribution is used to approximately calculate how much energy is absorbed by each pigment and quantifies the photon adsorption amount after conversion.
 
</p>
 
</p>
 
 
Line 475: Line 475:
  
 
 
<!-- Microalgae productivity in different temperature -->
+
<!-- Microalgae productivity in different temperatures -->
 
<div class='panel'>
 
<div class='panel'>
 
<div id="s10" class="expandable" style='height: 30px;padding-top:15px;'>
 
<div id="s10" class="expandable" style='height: 30px;padding-top:15px;'>
Line 481: Line 481:
 
<a href="#!" onclick="toggleHeight10(this, 960); return false"  
 
<a href="#!" onclick="toggleHeight10(this, 960); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Microalgae productivity in different temperature
+
Microalgae productivity in different temperatures
 
</a>
 
</a>
 
 
<p>  After we get the influential degree on temperature, we can use our modeling to predict the productivity of microalgae at different temperature without other affecting factors. It is the modeling to ensure that our experiments are under control.
+
<p>  After we get the influential degree on temperature, we can use our modeling to predict the productivity of microalgae at different temperature without other affecting factors. Modeling is used to ensure that our experiments are under control.
 
</p>
 
</p>
 
 
Line 541: Line 541:
 
<center>
 
<center>
 
<img src='https://static.igem.org/mediawiki/2017/8/8c/T--NYMU-Taipei--model_t-spr.png'  
 
<img src='https://static.igem.org/mediawiki/2017/8/8c/T--NYMU-Taipei--model_t-spr.png'  
alt='Microalgae productivity in different temperature'
+
alt='Microalgae productivity in different temperatures'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>Fig.3 Microalgae productivity in different temperature</p>
+
<p style='font-size:20px'>Fig.3 Microalgae productivity in different temperatures</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
Line 555: Line 555:
 
</div>
 
</div>
  
<!-- Microalgae productivity in different pH -->
+
<!-- Microalgae productivity in different pH values-->
 
<div class='panel'>
 
<div class='panel'>
 
<div id="s11" class="expandable" style='height: 30px;padding-top:15px;'>
 
<div id="s11" class="expandable" style='height: 30px;padding-top:15px;'>
Line 561: Line 561:
 
<a href="#!" onclick="toggleHeight11(this, 1020); return false"  
 
<a href="#!" onclick="toggleHeight11(this, 1020); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Microalgae productivity in different pH
+
Microalgae productivity in different pH values
 
</a>
 
</a>
 
 
<p>  When our <i>Synechococcus PCC7942</i> grows at each phase, the equilibrium of pH value is different. This model can be used to collocate with our device, and also accomplishing the purpose of enhance productivity.
+
<p>  When our <i>Synechococcus PCC7942</i> grows at each phase, the equilibrium of the pH value is different. This model can be used to collocate with our device, and also accomplish the purpose of enhancing productivity.
 
</p>
 
</p>
 
 
Line 636: Line 636:
 
</a>
 
</a>
 
 
<p>  The model tells us the tendency and that theoretically there is no faster photosynthetic rate, only if more energy is absorbed. After working with other modeling, we can establish the relation between photosynthetic rate and total absorption for the purpose of best balance.
+
<p>  The model tells us that theoretically, there is no faster photosynthetic rate unless more energy is absorbed. After working with other models, we established the relationship between photosynthetic rate and total absorption for the purpose of best balance.
 
</p>
 
</p>
 
 
Line 704: Line 704:
 
<h1><i>Chlorella vulgaris</i></h1>
 
<h1><i>Chlorella vulgaris</i></h1>
 
<div class='model_wrapper' >
 
<div class='model_wrapper' >
<p>  The modeling from figure 6 to figure 13 belongs to the experiments of <i>Chlorella vulgaris</i> for nitrogen starvation. To precisely calculate the time of starting co-culturing and ensure there are enough high affinity E. coli in bioreactor, we build several models, which include the original system and new one. They demonstrate the significant improvement of productivity, after successfully isolated the microalgae from nitrogen. For instance, one of them provide variety information about population when two organisms in the pool start building some relationship.
+
<p>  The modeling from Figure 6 to Figure 13 belongs to the experiments of <i>Chlorella vulgaris</i> for nitrogen starvation. To precisely calculate the timing of starting co-culturing and to ensure there are enough high-affinity E. coli in the bioreactor, we built several models that include the original and new system. They demonstrated the significant improvement of productivity after successfully deprived the microalgae from nitrogen. For instance, one of them provides a variety of information about population when two organisms in the pool start building some relationship.
 
</p>
 
</p>
 
</div>
 
</div>
Line 716: Line 716:
 
</a>
 
</a>
 
 
<p>  The timing of adding engineered <i>E.coli</i> or purified protein to <i>Chlorella vulgaris</i> culture is critical to our project. By analyzing the initial and final biomass concentration data, the instantaneous rate, which is based on reference time and other lab environment data, would be gained. We have simulated the change in biomass concentration throughout the culture cycle. The intermittent information in the culture medium at each point is ultimately gained through combining other modeling results, which aims to determine the best timing and corresponding state.
+
<p>  The timing of adding engineered <i>E.coli</i> or purified protein to <i>Chlorella vulgaris</i> culture is critical to our project. By analyzing the initial and final biomass concentration data the instantaneous rate would be gained. This instantaneous rate is based on reference time and other lab environment data. We have simulated the change in biomass concentration throughout the culture cycle. The intermittent information in the culture medium at each point is ultimately gained through combining other modeling results, which aims to determine the best timing and corresponding state.
 
</p>
 
</p>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
Line 799: Line 799:
 
</a>
 
</a>
 
 
<p>  By simulating common system of oil accumulation and nitrogen source consumption, we can not only get the reference data before the improvement, but also make it as a basic equation after joining some parameters or organisms into the system.
+
<p>  By simulating common systems of oil accumulation and nitrogen source consumption, we cannot only get the reference data before the improvement, but also make it a basic equation after joining some parameters or organisms into the system.
 
</p>
 
</p>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
 
<h6 style='color:#bc0101; font-family:"Roboto Mono", monospace;'>
Line 885: Line 885:
 
alt='Oil accumulation and nirogen source consumption at normal situation'
 
alt='Oil accumulation and nirogen source consumption at normal situation'
 
style='width:90%'>
 
style='width:90%'>
<p style='font-size:20px'>Fig.7 Oil accumulation and nirogen source consumption at normal situation</p>
+
<p style='font-size:20px'>Fig.7 Oil accumulation and nirogen source consumption at normal situation(lipid:green;nitrogen:blue)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
Line 898: Line 898:
 
</div>
 
</div>
 
 
<!-- Biomass in different nitrogen concentration-->
+
<!-- Biomass in different nitrogen concentrations-->
 
<div class='panel'>
 
<div class='panel'>
 
<div id="s3" class="expandable" style='height: 30px;padding-top:15px;'>
 
<div id="s3" class="expandable" style='height: 30px;padding-top:15px;'>
Line 904: Line 904:
 
<a href="#!" onclick="toggleHeight3(this, 1250); return false"  
 
<a href="#!" onclick="toggleHeight3(this, 1250); return false"  
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
 
style="font-family:'Acme', sans-serif;font-size:34px;color:#393a1f;height: 30px;">
Biomass in different nitrogen concentration
+
Biomass in different nitrogen concentrations
 
</a>
 
</a>
 
 
<p>  To find out the best quantity of nitrogen removal, we model several situations of decreasing the biomass in different environment with different concentration of nitrogen, and then we can find the best productivity by comparison.
+
<p>  To find out the best quantity of nitrogen removal, we modeled several situations of decreasing the biomass in different environments with different concentration of nitrogen. We then find the best productivity by comparing these two situations.  
 
</p>
 
</p>
 
 
Line 921: Line 921:
 
                             <th scope="col">Definition</th>
 
                             <th scope="col">Definition</th>
 
                             <th scope="col">Unit</th>
 
                             <th scope="col">Unit</th>
 +
                            <th scope="col"&>Value</th>
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
 
                             <th>n<sub>1</sub></th>
 
                             <th>n<sub>1</sub></th>
 
                             <th>biomass at frist state</th>
 
                             <th>biomass at frist state</th>
                             <th>g/l</th>                         
+
                             <th>g/l</th>
 +
                            <th>-</th>                         
 
                         </tr>
 
                         </tr>
 
<tr>
 
<tr>
Line 931: Line 933:
 
                             <th>biomass at secind state</th>
 
                             <th>biomass at secind state</th>
 
                             <th>g/l</th>
 
                             <th>g/l</th>
 +
                            <th>-</th>
 
                         </tr>
 
                         </tr>
 
<tr>
 
<tr>
Line 936: Line 939:
 
                             <th>biomass concentration</th>
 
                             <th>biomass concentration</th>
 
                             <th>g/l</th>
 
                             <th>g/l</th>
 +
                            <th>-</th>
 
</tr>
 
</tr>
 
                         <tr>
 
                         <tr>
 
                             <th>t</th>
 
                             <th>t</th>
 
                             <th>time</th>
 
                             <th>time</th>
<th>hr</th>
+
                            <th>hr</th>
 +
                            <th>-</th>
 
                         </tr>
 
                         </tr>
 
                         </table>
 
                         </table>
Line 948: Line 953:
 
                             <th>Symbol</th>
 
                             <th>Symbol</th>
 
                             <th scope="col">Definition</th>
 
                             <th scope="col">Definition</th>
 +
                            <th scope="col">Unit</th>
 
                             <th scope="col"&>Value</th>
 
                             <th scope="col"&>Value</th>
 
                         </tr>
 
                         </tr>
Line 953: Line 959:
 
                             <th>A</th>
 
                             <th>A</th>
 
                             <th>the asymptotic of ln X<sub>t</sub>/X<sub>0</sub> as t decrese indefinitely</th>
 
                             <th>the asymptotic of ln X<sub>t</sub>/X<sub>0</sub> as t decrese indefinitely</th>
 +
                            <th>-</th>
 
                             <th>-39.9532</th>
 
                             <th>-39.9532</th>
 
                         </tr>
 
                         </tr>
Line 958: Line 965:
 
                             <th>B</th>
 
                             <th>B</th>
 
                             <th>the asymptotic of ln X<sub>t</sub>/X<sub>0</sub> as t increase indefinitely </th>
 
                             <th>the asymptotic of ln X<sub>t</sub>/X<sub>0</sub> as t increase indefinitely </th>
 +
                            <th>-</th>
 
                             <th>-0.0222</th>
 
                             <th>-0.0222</th>
 
                         </tr>
 
                         </tr>
Line 963: Line 971:
 
                             <th>C</th>
 
                             <th>C</th>
 
                               <th>the relative growth rate at time M hr</th>
 
                               <th>the relative growth rate at time M hr</th>
 +
                              <th>-</th>
 
                               <th>45.6931</th>
 
                               <th>45.6931</th>
 
                         </tr>
 
                         </tr>
Line 968: Line 977:
 
                             <th>k</th>
 
                             <th>k</th>
 
                               <th>constant</th>
 
                               <th>constant</th>
 +
                              <th>-</th>
 
                               <th>8.15229</th>
 
                               <th>8.15229</th>
 
                         </tr>
 
                         </tr>
Line 973: Line 983:
 
                             <th>b</th>
 
                             <th>b</th>
 
                               <th>yield coefficient</th>
 
                               <th>yield coefficient</th>
 +
                              <th>-</th>
 
                               <th>1207.569</th>
 
                               <th>1207.569</th>
 
                         </tr>
 
                         </tr>
Line 978: Line 989:
 
                             <th>n<sub>s</sub></th>
 
                             <th>n<sub>s</sub></th>
 
                               <th>initial nitrogen concentration</th>
 
                               <th>initial nitrogen concentration</th>
 +
                              <th>-</th>
 
                               <th>-</th>
 
                               <th>-</th>
 
                         </tr>
 
                         </tr>
Line 983: Line 995:
 
                             <th>a</th>
 
                             <th>a</th>
 
                               <th>regression constant</th>
 
                               <th>regression constant</th>
 +
                              <th>-</th>
 
                               <th>0.01</th>
 
                               <th>0.01</th>
 
                         </tr>
 
                         </tr>
Line 988: Line 1,001:
 
                             <th>e</th>
 
                             <th>e</th>
 
                               <th>a perturbation</th>
 
                               <th>a perturbation</th>
 +
                            <th>-</th>
 
                               <th>0.50678</th>
 
                               <th>0.50678</th>
 
                         </tr>
 
                         </tr>
Line 997: Line 1,011:
 
alt='Biomass in different nitrogen concentration'
 
alt='Biomass in different nitrogen concentration'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>Fig.8 Biomass in different nitrogen concentration</p>
+
<p style='font-size:20px'>Fig.8 Biomass in different nitrogen concentration(concentration after nitrogen deletion,black:0.1;red:0.03;green:0.02;blue:0.01;yellow:0.005  g/l)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
Line 1,018: Line 1,032:
 
</a>
 
</a>
 
 
<p>  We put normal and modified nitrogen source systems together to see their demonstration, like speed and occasion. By constructing this model, we can find out the declining rate of each state, and then adjust experiments.
+
<p>  We put normal and modified nitrogen source systems together to see their demonstration like speed and occasion. By constructing this model, we can find out the declining rate of each state and then adjust our experiments.
 
</p>
 
</p>
 
 
Line 1,062: Line 1,076:
 
alt='Nitrogen source in nitrogen starvation'
 
alt='Nitrogen source in nitrogen starvation'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>Fig.9 Nitrogen source in nitrogen starvation</p>
+
<p style='font-size:20px'>Fig.9 Nitrogen source in nitrogen starvation(normal:blue;starvation:red)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
Line 1,149: Line 1,163:
 
</a>
 
</a>
 
 
<p>  According to our reference of experiment data, we find that <i>E.coli</i> can build a relationship, which is like symbiosis, with <i>Chlorella vulgaris</i>. Therefore, we build a model and use three kinds of values from different situation to simulate their change when they are co-cultured. According to this, we get the proper experimental proportion of them at each need.
+
<p>  According to our reference of experimental data, we find that <i>E.coli</i> can build a relationship, which is like symbiosis, with <i>Chlorella vulgaris</i>. Therefore, we build a model and use three kinds of values from different situations to simulate their change when they are co-cultured. According to this, we get the proper experimental proportion of them at each need.
 
</p>
 
</p>
 
 
Line 1,171: Line 1,185:
 
                             <th>-</th>
 
                             <th>-</th>
 
                         </tr>
 
                         </tr>
 +
                        <tr>
 +
                            <th>X</th>
 +
                            <th>chlorella vulgaris</th>
 +
                            <th>-</th>
 +
                            <th>-</th>
 +
                        </tr>
 +
 
                         <tr>
 
                         <tr>
 
                             <th>R<sub>x</sub></th>
 
                             <th>R<sub>x</sub></th>
Line 1,226: Line 1,247:
 
alt='Population of co-cultured Chlorella and modified E.coli'
 
alt='Population of co-cultured Chlorella and modified E.coli'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>Fig.11-1 Population of co-cultured Chlorella and modified E.coli(initial concentration 0.1g/l)</p>
+
<p style='font-size:20px'>Fig.11-1 Population of co-cultured Chlorella and modified E.coli(initial concentration 0.1g/l) (chlorella vulgaris:green;e.coli:orange) </p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
Line 1,234: Line 1,255:
 
alt='Population of co-cultured Chlorella and modified E.coli'
 
alt='Population of co-cultured Chlorella and modified E.coli'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>Fig.11-2 Population of co-cultured Chlorella and modified E.coli(initial concentration 0.012g/l)</p>
+
<p style='font-size:20px'>Fig.11-2 Population of co-cultured Chlorella and modified E.coli(initial concentration 0.012g/l)(chlorella vulgaris:green;e.coli:orange)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>
Line 1,350: Line 1,371:
 
</a>
 
</a>
 
 
<p>  NrtA is an endocrine secretion protein and this characteristic is a bound to reach our goal because it do not has enough efficiency to make microalgae to produce a significant amount of biofuel. We have tried to turn NrtA into exocrine secretion protein but unfortunately, we didn’t make it in time. If we have successfully transform it into a exocrine secretion protein, and with the help of the connected constitutive promoter, we might have a better result than before theoretically. And this model provide the predictive changement and productivity of new method.
+
<p>  NrtA is an endocrine secretion protein and this characteristic is a bound to reach our goal because it does not have enough efficiency to make microalgae to produce a significant amount of biofuel. We have tried to turn NrtA into exocrine secretion protein but unfortunately, we didn’t make it in time. If we have successfully transform it into a exocrine secretion protein, and with the help of the connected constitutive promoter, we might have a better result than before theoretically. And this model provide the predictive quantity of change and productivity of new method.
 
</p>
 
</p>
 
 
Line 1,451: Line 1,472:
 
alt='NrtA exocrine secretion'
 
alt='NrtA exocrine secretion'
 
style='width:65%'>
 
style='width:65%'>
<p style='font-size:20px'>Fig.13 NrtA exocrine secretion</p>
+
<p style='font-size:20px'>Fig.13 NrtA exocrine secretion
 +
(normal quantity in cell:green;exocrine quantity in cell:yellow;normal productive speed:purple;exocrine productive speed:pink)</p>
 
</center>
 
</center>
 
<p></p>
 
<p></p>

Latest revision as of 19:22, 1 November 2017

MODELING

  This year, our modeling focuses on predicting the effect of our modified microbes on productivity. It is an extremely important part to our project because it helps us accurately check and predict information from our experiments that are tested in the wet lab. In our project, there are two essential types of microalgae that play very important roles, Synechococcus PCC7942 and Chlorella vulgaris. The following descriptions will show our success in modeling.

Synechococcus PCC7942

  The modeling from Figure 1 to Figure 5 belongs to the experiments of Synechococcus PCC7942 pigments for better photosynthetic efficiencies. We need to check if another microalgae contains an exogenous pigment that can successfully reach new photosynthesis rate and further increase the proportion of biomass. We already have models about the influence of energy adsorption, but pigments will certainly affect other factors. Therefore, we construct several models that each represents an important factor in the growth and cell composition. Thus, we can determine the best culturing collocation by combining these models.

Chlorella vulgaris

  The modeling from Figure 6 to Figure 13 belongs to the experiments of Chlorella vulgaris for nitrogen starvation. To precisely calculate the timing of starting co-culturing and to ensure there are enough high-affinity E. coli in the bioreactor, we built several models that include the original and new system. They demonstrated the significant improvement of productivity after successfully deprived the microalgae from nitrogen. For instance, one of them provides a variety of information about population when two organisms in the pool start building some relationship.