Difference between revisions of "Team:Potsdam/Protocols"

Line 1,098: Line 1,098:
  
 
<br> <br>
 
<br> <br>
<b>1.Production of cleared lysate</b>
+
<b> 1. Aim </b>
 +
<br> <br>
 +
<b>2.Production of cleared lysate</b>
 
<br><br>
 
<br><br>
 
<div style="text-indent:20px;">  
 
<div style="text-indent:20px;">  
 
1. Isolation of the bacteria </div>
 
1. Isolation of the bacteria </div>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1.  harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)  
+
1.  Harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)  
of bacterial culture  
+
of bacterial culture .
 
<br>
 
<br>
2. centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge
+
2. Centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge.
 
<br>
 
<br>
3. pour off the supernatant  
+
3. Pour off the supernatant.
 
<br>
 
<br>
4. reinsert again bacterial culture to the pellet and repeat step 2 and 3
+
4. Reinsert again bacterial culture to the pellet and repeat step 2 and 3.
 
<br>
 
<br>
5. blot the inverted tube on a paper towel to remove excess media
+
5. Blot the inverted tube on a paper towel to remove excess media.
 
<br> </div>
 
<br> </div>
 
<div style="text-indent:20px;">  
 
<div style="text-indent:20px;">  
Line 1,119: Line 1,121:
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
1.
add 250 μl of Cell Resuspension Solution  
+
Add 250 μl of Cell Resuspension Solution.
 
<br>
 
<br>
 
2.
 
2.
completely resuspend the cell pellet by vortexing or pipetting
+
Completely resuspend the cell pellet by vortexing or pipetting.
 
<br>
 
<br>
 
3.
 
3.
it is essential to thoroughly resuspend the cells
+
It is essential to thoroughly resuspend the cells.
 
<br></div>
 
<br></div>
 
<div style="text-indent:20px;">  
 
<div style="text-indent:20px;">  
Line 1,132: Line 1,134:
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
1.
add 250 μl of Cell Lysis Solution  
+
Add 250 μl of Cell Lysis Solution.
 
<br>
 
<br>
 
2.
 
2.
mix by inverting the tube 4 times - do not vortex
+
Mix by inverting the tube 4 times - do not vortex.
 
<br>
 
<br>
 
3.
 
3.
incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes)
+
Incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes).
 
<br></div>
 
<br></div>
 
<div style="text-indent:20px;">  
 
<div style="text-indent:20px;">  
 
4.
 
4.
Splitting proteins </div>
+
Splitting proteins </div>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
1.
add 10 μl of Alkaline Protease Solution  
+
Add 10 μl of Alkaline Protease Solution.
 
<br>
 
<br>
 
2.
 
2.
mix by inverting the tube 4 times - do not vortex
+
Mix by inverting the tube 4 times - do not vortex.
 
<br>
 
<br>
 
3.
 
3.
incubate for 5 minutes at room temperature
+
Incubate for 5 minutes at room temperature.
 
<br></div>
 
<br></div>
 
<div style="text-indent:20px;">  
 
<div style="text-indent:20px;">  
Line 1,158: Line 1,160:
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
1.
add 350 μl of Neutralization Solution  
+
Add 350 μl of Neutralization Solution.
 
<br>
 
<br>
 
2.
 
2.
immediately mix by inverting the tube 4 times - do not vortex
+
Immediately mix by inverting the tube 4 times - do not vortex.
 
<br></div>
 
<br></div>
 
<div style="text-indent:20px;">  
 
<div style="text-indent:20px;">  
Line 1,169: Line 1,171:
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
1.
centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature  
+
Centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature.
 
<br> <br>
 
<br> <br>
 
<br></div>
 
<br></div>
<b>2. Isolation of the plasmid DNA </b>
+
<b>3. Isolation of the plasmid DNA </b>
 
<br><br>
 
<br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
Line 1,193: Line 1,195:
  
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
3. Wash the plasmid DNA </div>
+
3. Wash the plasmid DNA. </div>
  
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
Line 1,206: Line 1,208:
 
<br></div>
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
4. Wash again the plasmid DNA </div>
+
4. Wash again the plasmid DNA. </div>
  
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">

Revision as of 18:46, 31 October 2017

No Sidebar - Escape Velocity by HTML5 UP

Our research work

Research work


Finding a suitable topic was very challenging and time consuming. Initially we looked through projects of prior teams and a list of topic suggestion provided by iGEM.

A big influence was a new method for assembling genes in a manufacturing manner which was being developed by a research group on our university. Based on the quick and easy synthesis of proteins a first idea was the creation of enzymes that could convert blood groups. Also working with cyanobacteria was an option we considered.

After many seminars we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membrane-less organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.

We thought about using either violacein or beta carotene as exemplary product for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in E. coli.

Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.

But all the planning was for nothing when we realized that some of the enzymes of the beta carotene pathway were localized in the membrane and therefore not suitable for our metabolic channeling approach.

After planning the design more precise we eventually arrived at our scaffold design of a low and a high-copy plasmid.

Protocols