Difference between revisions of "Team:Potsdam/Protocols"

Line 588: Line 588:
  
  
 +
<div class="spoiler">   
 +
<input type="button"style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Ligation" />   
 +
<div class="inner" style="display:none;">
 +
<div align="justify">
 +
<br> <br>
 +
<b>1. Aim </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Enzymatically linkage of two DNA/RNA segments. <br><br>
 +
</div>
 +
<b> 2. Steps </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Set up the following reaction in a microcentrifuge tube on ice.<br></div><br> <br>
 +
<table>
 +
  <tr>
 +
    <th  width="50%" align="center"><b>component</b></th>
 +
    <th  width="50%" align="center"><b>volume</b></th>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">T4 DNA Ligase Buffer (10 x)</td>
 +
    <td align="center">2 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">10x buffer</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">T4 DNA Ligase</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center"> Vector DNA </td>
 +
    <td align="center"></td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">Insert DNA</td>
 +
    <td align="center"></td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">Nuclease-free water </td>
 +
    <td align="center"> to 20 µl</td>
 +
  </tr>
 +
</table>
  
 +
<div style="text-align: justify; margin-left:60px"> 
 +
1. Calculation of the DNA
 +
<br>
 +
 +
kb (smaller DNA)/ kb (larger DNA)&sdot;mass (Vector DNA)&sdot;relation (Insert DNA)
 +
<br> <br>
 +
Example calculation </div>
 +
<div style="text-align: justify; margin-left:80px">
 +
1:3 vector to insert <br>
 +
mass Vector DNA: 100 ng <br>
 +
Vector DNA: 10 kb <br>
 +
Insert DNA: 3 kb<br><br>
 +
3 kb/ 10 kb&sdot;100 ng&sdot;3 = 90 ng</div>
 +
 +
<div style="text-align: justify; margin-left:60px">
 +
2. T4 DNA Ligase should be added last.<br>
 +
3. Use nebiocalculator.neb.com/#!/ to calculate molar ratios. <br>
 +
4. The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature. </div>
 +
<div style="text-align: justify; margin-left:20px">
 +
2. Gently mix the reaction by pipetting up and down and microfuge briefly.<br>
 +
3. Incubation </div>
 +
<div style="text-align: justify; margin-left:60px">
 +
1. Cohesive (sticky) ends. </div>
 +
<div style="text-align: justify; margin-left:80px"> 1. 16 °C overnight or room temperature for 10 minutes. </div>
 +
<div style="text-align: justify; margin-left:60px">
 +
2. Blunt ends or single base overhangs. </div>
 +
<div style="text-align: justify; margin-left:80px">
 +
1. 16°C overnight or room temperature for 2 hours (alternatively, high concentration T4 DNA Ligase can be used in a 10 minute ligation). </div>
 +
<div style="text-align: justify; margin-left:20px">
 +
4.Heat inactivate at 65°C for 10 minutes. <br>
 +
5. Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells.</div>
 +
<br> <br>
 +
<hr size="10" noshade></hr>
 +
<p style="font-size:12pt;"><sup>[1]</sup>
 +
https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202</p>
 +
</div></div></div></div>
 +
 +
 +
 +
 +
 +
<div class="spoiler">   
 +
<input type="button"  style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Miniprep"/>   
 +
<div class="inner" style="display:none;">
 +
 +
<br> <br>
 +
<b> 1. Aim </b><br> <br>
 +
<div style="text-indent:20px;">
 +
Isolation of DNA as a plasmid</div>
 +
<br> <br>
 +
<b>2.Production of cleared lysate</b>
 +
<br><br>
 +
<div style="text-indent:20px;">
 +
1. Isolation of the bacteria </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.  Harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)
 +
of bacterial culture .
 +
<br>
 +
2. Centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge.
 +
<br>
 +
3. Pour off the supernatant.
 +
<br>
 +
4. Reinsert again bacterial culture to the pellet and repeat step 2 and 3.
 +
<br>
 +
5. Blot the inverted tube on a paper towel to remove excess media.
 +
<br> </div>
 +
<div style="text-indent:20px;">
 +
2.
 +
Resuspension of the cells </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 250 μl of Cell Resuspension Solution.
 +
<br>
 +
2.
 +
Completely resuspend the cell pellet by vortexing or pipetting.
 +
<br>
 +
3.
 +
It is essential to thoroughly resuspend the cells.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
3.
 +
Lysing </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 250 μl of Cell Lysis Solution.
 +
<br>
 +
2.
 +
Mix by inverting the tube 4 times - do not vortex.
 +
<br>
 +
3.
 +
Incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes).
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
4.
 +
Splitting proteins </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 10 μl of Alkaline Protease Solution.
 +
<br>
 +
2.
 +
Mix by inverting the tube 4 times - do not vortex.
 +
<br>
 +
3.
 +
Incubate for 5 minutes at room temperature.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
5.
 +
Neutralization </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 350 μl of Neutralization Solution.
 +
<br>
 +
2.
 +
Immediately mix by inverting the tube 4 times - do not vortex.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
6.
 +
Isolation of the plasmids </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature.
 +
<br> <br>
 +
<br></div>
 +
<b>3. Isolation of the plasmid DNA </b>
 +
<br><br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Transfer the cleared lysate (approximately 850 μl, Section 3.B, Step 6) to the
 +
prepared Spin Column by decanting. Avoid disturbing or transferring any of the
 +
white precipitate with the supernatant. </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1. If the white precipitate is accidentally transferred to the Spin Column, pour
 +
the Spin Column contents back into a sterile 1.5ml microcentrifuge tube
 +
and centrifuge for another 5–10 minutes at maximum speed. Transfer the
 +
resulting supernatant into the same Spin Column that was used initially for
 +
this sample. The Spin Column can be reused but only for this sample.</div>
 +
 +
<div style="text-align: justify; margin-left:20px">
 +
2. Centrifuge the supernatant at maximum speed in a microcentrifuge for 1 minute at
 +
room temperature. Remove the Spin Column from the tube and discard the
 +
flowthrough from the Collection Tube. Reinsert the Spin Column into the Collection
 +
Tube. </div>
 +
 +
<div style="text-align: justify; margin-left:20px">
 +
3. Wash the plasmid DNA. </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 750 μl of Column Wash Solution.
 +
<br>
 +
2. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room
 +
temperature.
 +
<br>
 +
3. Remove the Spin Column from the tube and discard the flowthrough.
 +
<br>
 +
4. Reinsert the Spin Column into the Collection Tube.
 +
<br></div>
 +
<div style="text-align: justify; margin-left:20px">
 +
4. Wash again the plasmid DNA. </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 250 μl of Column Wash Solution.
 +
<br>
 +
2. Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room
 +
temperature.
 +
<br>
 +
3. If the Spin Column has Column Wash Solution associated with it,
 +
centrifuge again for 1 minute at maximum speed.
 +
<br>
 +
4. Transfer the Spin Column to a new, sterile 1.5ml microcentrifuge tube, being
 +
careful not to transfer any of the Column Wash Solution with the Spin Column.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
5. Elute the plasmid DNA </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 50 μl of Nuclease-Free Water to the Spin Column, wait 5 minutes
 +
<br>
 +
2. Centrifuge at maximum speed for 1 minute at room temperature in a
 +
microcentrifuge.
 +
<br></div>
 +
<div style="text-align: justify; margin-left:20px">
 +
6. After eluting the DNA, remove the assembly from the 1.5ml microcentrifuge tube
 +
and discard the Spin Column.</div>
 +
<br>
 +
<hr size="10" noshade></hr>
 +
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/wizard-plus-sv-minipreps-dna-purification-system-protocol.pdf</p>
 +
</div></div>
  
  
Line 1,009: Line 1,239:
  
  
<div class="spoiler">   
 
<input type="button"style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Ligation" />   
 
<div class="inner" style="display:none;">
 
<div align="justify">
 
<br> <br>
 
<b>1. Aim </b> <br> <br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Enzymatically linkage of two DNA/RNA segments. <br><br>
 
</div>
 
<b> 2. Steps </b> <br> <br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Set up the following reaction in a microcentrifuge tube on ice.<br></div><br> <br>
 
<table>
 
  <tr>
 
    <th  width="50%" align="center"><b>component</b></th>
 
    <th  width="50%" align="center"><b>volume</b></th>
 
  </tr>
 
  <tr>
 
    <td align="center">T4 DNA Ligase Buffer (10 x)</td>
 
    <td align="center">2 µl</td>
 
  </tr>
 
  <tr>
 
    <td align="center">10x buffer</td>
 
    <td align="center">1 µl</td>
 
  </tr>
 
  <tr>
 
    <td align="center">T4 DNA Ligase</td>
 
    <td align="center">1 µl</td>
 
  </tr>
 
  <tr>
 
    <td align="center"> Vector DNA </td>
 
    <td align="center"></td>
 
  </tr>
 
  <tr>
 
    <td align="center">Insert DNA</td>
 
    <td align="center"></td>
 
  </tr>
 
  <tr>
 
    <td align="center">Nuclease-free water </td>
 
    <td align="center"> to 20 µl</td>
 
  </tr>
 
</table>
 
  
<div style="text-align: justify; margin-left:60px"> 
 
1. Calculation of the DNA
 
<br>
 
 
kb (smaller DNA)/ kb (larger DNA)&sdot;mass (Vector DNA)&sdot;relation (Insert DNA)
 
<br> <br>
 
Example calculation </div>
 
<div style="text-align: justify; margin-left:80px">
 
1:3 vector to insert <br>
 
mass Vector DNA: 100 ng <br>
 
Vector DNA: 10 kb <br>
 
Insert DNA: 3 kb<br><br>
 
3 kb/ 10 kb&sdot;100 ng&sdot;3 = 90 ng</div>
 
 
<div style="text-align: justify; margin-left:60px">
 
2. T4 DNA Ligase should be added last.<br>
 
3. Use nebiocalculator.neb.com/#!/ to calculate molar ratios. <br>
 
4. The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature. </div>
 
<div style="text-align: justify; margin-left:20px">
 
2. Gently mix the reaction by pipetting up and down and microfuge briefly.<br>
 
3. Incubation </div>
 
<div style="text-align: justify; margin-left:60px">
 
1. Cohesive (sticky) ends. </div>
 
<div style="text-align: justify; margin-left:80px"> 1. 16 °C overnight or room temperature for 10 minutes. </div>
 
<div style="text-align: justify; margin-left:60px">
 
2. Blunt ends or single base overhangs. </div>
 
<div style="text-align: justify; margin-left:80px">
 
1. 16°C overnight or room temperature for 2 hours (alternatively, high concentration T4 DNA Ligase can be used in a 10 minute ligation). </div>
 
<div style="text-align: justify; margin-left:20px">
 
4.Heat inactivate at 65°C for 10 minutes. <br>
 
5. Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells.</div>
 
<br> <br>
 
<hr size="10" noshade></hr>
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202</p>
 
</div></div></div></div>
 
 
 
 
 
 
<div class="spoiler">   
 
<input type="button"  style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Miniprep"/>   
 
<div class="inner" style="display:none;">
 
 
<br> <br>
 
<b> 1. Aim </b><br> <br>
 
<div style="text-indent:20px;">
 
Isolation of DNA as a plasmid</div>
 
<br> <br>
 
<b>2.Production of cleared lysate</b>
 
<br><br>
 
<div style="text-indent:20px;">
 
1. Isolation of the bacteria </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.  Harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)
 
of bacterial culture .
 
<br>
 
2. Centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge.
 
<br>
 
3. Pour off the supernatant.
 
<br>
 
4. Reinsert again bacterial culture to the pellet and repeat step 2 and 3.
 
<br>
 
5. Blot the inverted tube on a paper towel to remove excess media.
 
<br> </div>
 
<div style="text-indent:20px;">
 
2.
 
Resuspension of the cells </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
Add 250 μl of Cell Resuspension Solution.
 
<br>
 
2.
 
Completely resuspend the cell pellet by vortexing or pipetting.
 
<br>
 
3.
 
It is essential to thoroughly resuspend the cells.
 
<br></div>
 
<div style="text-indent:20px;">
 
3.
 
Lysing </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
Add 250 μl of Cell Lysis Solution.
 
<br>
 
2.
 
Mix by inverting the tube 4 times - do not vortex.
 
<br>
 
3.
 
Incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes).
 
<br></div>
 
<div style="text-indent:20px;">
 
4.
 
Splitting proteins </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
Add 10 μl of Alkaline Protease Solution.
 
<br>
 
2.
 
Mix by inverting the tube 4 times - do not vortex.
 
<br>
 
3.
 
Incubate for 5 minutes at room temperature.
 
<br></div>
 
<div style="text-indent:20px;">
 
5.
 
Neutralization </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
Add 350 μl of Neutralization Solution.
 
<br>
 
2.
 
Immediately mix by inverting the tube 4 times - do not vortex.
 
<br></div>
 
<div style="text-indent:20px;">
 
6.
 
Isolation of the plasmids </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
Centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature.
 
<br> <br>
 
<br></div>
 
<b>3. Isolation of the plasmid DNA </b>
 
<br><br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Transfer the cleared lysate (approximately 850 μl, Section 3.B, Step 6) to the
 
prepared Spin Column by decanting. Avoid disturbing or transferring any of the
 
white precipitate with the supernatant. </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. If the white precipitate is accidentally transferred to the Spin Column, pour
 
the Spin Column contents back into a sterile 1.5ml microcentrifuge tube
 
and centrifuge for another 5–10 minutes at maximum speed. Transfer the
 
resulting supernatant into the same Spin Column that was used initially for
 
this sample. The Spin Column can be reused but only for this sample.</div>
 
 
<div style="text-align: justify; margin-left:20px">
 
2. Centrifuge the supernatant at maximum speed in a microcentrifuge for 1 minute at
 
room temperature. Remove the Spin Column from the tube and discard the
 
flowthrough from the Collection Tube. Reinsert the Spin Column into the Collection
 
Tube. </div>
 
 
<div style="text-align: justify; margin-left:20px">
 
3. Wash the plasmid DNA. </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 750 μl of Column Wash Solution.
 
<br>
 
2. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room
 
temperature.
 
<br>
 
3. Remove the Spin Column from the tube and discard the flowthrough.
 
<br>
 
4. Reinsert the Spin Column into the Collection Tube.
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
4. Wash again the plasmid DNA. </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 250 μl of Column Wash Solution.
 
<br>
 
2. Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room
 
temperature.
 
<br>
 
3. If the Spin Column has Column Wash Solution associated with it,
 
centrifuge again for 1 minute at maximum speed.
 
<br>
 
4. Transfer the Spin Column to a new, sterile 1.5ml microcentrifuge tube, being
 
careful not to transfer any of the Column Wash Solution with the Spin Column.
 
<br></div>
 
<div style="text-indent:20px;">
 
5. Elute the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 50 μl of Nuclease-Free Water to the Spin Column, wait 5 minutes
 
<br>
 
2. Centrifuge at maximum speed for 1 minute at room temperature in a
 
microcentrifuge.
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
6. After eluting the DNA, remove the assembly from the 1.5ml microcentrifuge tube
 
and discard the Spin Column.</div>
 
<br>
 
<hr size="10" noshade></hr>
 
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/wizard-plus-sv-minipreps-dna-purification-system-protocol.pdf</p>
 
</div></div>
 
  
  

Revision as of 18:53, 31 October 2017

No Sidebar - Escape Velocity by HTML5 UP

Our research work

Research work


Finding a suitable topic was very challenging and time consuming. Initially we looked through projects of prior teams and a list of topic suggestion provided by iGEM.

A big influence was a new method for assembling genes in a manufacturing manner which was being developed by a research group on our university. Based on the quick and easy synthesis of proteins a first idea was the creation of enzymes that could convert blood groups. Also working with cyanobacteria was an option we considered.

After many seminars we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membrane-less organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.

We thought about using either violacein or beta carotene as exemplary product for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in E. coli.

Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.

But all the planning was for nothing when we realized that some of the enzymes of the beta carotene pathway were localized in the membrane and therefore not suitable for our metabolic channeling approach.

After planning the design more precise we eventually arrived at our scaffold design of a low and a high-copy plasmid.

Protocols