Difference between revisions of "Team:Potsdam/Protocols"

 
(46 intermediate revisions by 4 users not shown)
Line 10: Line 10:
 
         <div id="main" class="container">
 
         <div id="main" class="container">
 
             <div id="content">
 
             <div id="content">
<p> We are describing our research work. Below you can find the protocols we used. </p>
+
<h1>Research work</h1>
 +
<p align="justify">
 +
<br>
 +
Finding a suitable topic was very challenging and time consuming. Initially, we looked through projects of prior teams and assembled a list of possible topics.
 +
<br>
 +
<br>
 +
A big influence was a new method for assembling genes in a manufacturing manner which was being developed by a research group on our university. Based on the quick and easy synthesis of proteins a first idea was the creation of enzymes that could convert blood groups. Also working with cyanobacteria was an option we considered.
 +
<br>
 +
<br>
 +
After many seminars, we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membraneless organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.
 +
<br>
 +
<br>
 +
We thought about using either violacein or beta carotene as exemplary pathways for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in <i>E. coli</i>. 
 +
<br>
 +
<br>
 +
<img src="https://static.igem.org/mediawiki/2017/8/85/T--Potsdam--home--enzyme.png" width="40%" style="float:right">
 +
Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.
 +
<br>
 +
<br>
 +
But all the planning was for nothing when we realized that some of the enzymes of the beta carotene pathway were localized in the membrane and therefore not suitable for our metabolic channeling approach.
 +
<br>
 +
<br>
 +
After planning the design more precise we eventually arrived at our scaffold design of a low and a high-copy plasmid.
 +
</p>
 +
 
  
  
Line 43: Line 67:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;"  onclick="showSpoiler(this);" value="3-A-Assembly" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;"  onclick="showSpoiler(this);" value="3-A-Assembly" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br>
 
<br>
 
<div>
 
<div>
<b> 1. Aim </b><br><br>
+
<b> 1. Preparation of starting plasmids </b>
<b> 2. Preparation of starting plasmids </b>
+
 
<br><br>
 
<br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
Line 54: Line 77:
  
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Restriction using biobrick assembly enzymes <br>
+
1. Restriction using biobrick assembly enzymes. <br>
  
2. This preparation step is needed to create sticky ends on the cassettes <br>
+
2. This preparation step is needed to create sticky ends on the cassettes. <br>
  
3. This step is only performed once <br>
+
3. This step is only performed once. <br>
  
4. Restriction with EcoRI and PstI (see restriction protocol) for all components </div>
+
4. Restriction with EcoRI and PstI (see restriction protocol) for all components. </div>
  
  
Line 104: Line 127:
 
<div style="text-align: justify; margin-left:20px">3. Final preparation steps </div>
 
<div style="text-align: justify; margin-left:20px">3. Final preparation steps </div>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Transformation of 9 different combinations into competent cells (see transformation protocol)<br>
+
1. Transformation of 9 different combinations into competent cells (see transformation protocol).<br>
2. Selection with corresponding antibiotics</div>
+
2. Selection with corresponding antibiotics.</div>
 
<br>
 
<br>
 
<div style="text-align: justify; margin-left:20px">4. Next day</div>
 
<div style="text-align: justify; margin-left:20px">4. Next day</div>
 
<div style="text-align: justify; margin-left:40px">  
 
<div style="text-align: justify; margin-left:40px">  
1. Colony pcr and gel run to check for sizes of cassettes <br>
+
1. Colony pcr and gel run to check for sizes of cassettes. <br>
  
2. Miniprep and check concentration via nanodrop <br>
+
2. Miniprep and check concentration via nanodrop. <br>
  
 
3. Many aliquots needed (small volume because thawing time) for future reactions!</div>
 
3. Many aliquots needed (small volume because thawing time) for future reactions!</div>
 
<br>
 
<br>
 
<br>
 
<br>
<b>3. 3A-assembly</b>
+
<b>2. 3A-assembly</b>
 
<br> <br>
 
<br> <br>
 
<div style="text-indent:20px;">1. Good to know </div>
 
<div style="text-indent:20px;">1. Good to know </div>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. The 3-A-assembly will be used to add more and more cassettes in a row <br>
+
1. The 3-A-assembly will be used to add more and more cassettes in a row. <br>
  
2. It is important to only combine cassettes with the same number (1, 2 and 3 have varying spacer length)<br>
+
2. It is important to only combine cassettes with the same number (1, 2 and 3 have varying spacer length).<br>
  
3. We will add cassettes and test frequently for viability to determine the maximum target-sequence length<br>
+
3. We will add cassettes and test frequently for viability to determine the maximum target-sequence length.<br>
  
4. We want to combine about five cassettes </div>
+
4. We want to combine about five cassettes. </div>
 
<br>
 
<br>
  
Line 133: Line 156:
  
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. In each assembly cycle, there will be two cassettes (same number/length) added to one linearized plasmid <br>
+
1. In each assembly cycle, there will be two cassettes (same number/length) added to one linearized plasmid. <br>
  
2. In the first step, we can either just use the prepared plasmid with cassettes already inserted or use an empty one, because the part in between will be cut out anyway <br>
+
2. In the first step, we can either just use the prepared plasmid with cassettes already inserted or use an empty one, because the part in between will be cut out anyway. <br>
  
3. The be able to select for plasmid with higher cassette content the resistances will cycle<br>
+
3. The be able to select for plasmid with higher cassette content the resistances will cycle.<br>
  
4. The resistance cycle (for plasmids) is K C A <br>
+
4. The resistance cycle (for plasmids) is K C A. <br>
  
5. For the inserts, the resistance signals from which plasmid they will be cut<br>
+
5. For the inserts, the resistance signals from which plasmid they will be cut.<br>
  
 
6. The plasmids resistance determines the selection antibiotics for that step!</div>
 
6. The plasmids resistance determines the selection antibiotics for that step!</div>
Line 198: Line 221:
  
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Insert 1 is cut out of plasmid C1/Insert 2 is cut out of plasmid A1 and plamsid K1 is linearized <br>
+
1. Insert 1 is cut out of plasmid C1/Insert 2 is cut out of plasmid A1 and plamsid K1 is linearized .<br>
  
2. Insert 1 and 2 are ligated into plasmid K1 <br>
+
2. Insert 1 and 2 are ligated into plasmid K1. <br>
3. Insert 1 is cut out of plasmid A2/Insert 2 (here the fusion from Insert 1+2 from the first cycle) is cut out of K1 and plasmid C2 is linearized <br>
+
3. Insert 1 is cut out of plasmid A2/Insert 2 (here the fusion from Insert 1+2 from the first cycle) is cut out of K1 and plasmid C2 is linearized. <br>
4. Insert 1 and 2 are ligated into plasmid C2<br>
+
4. Insert 1 and 2 are ligated into plasmid C2.<br>
  
5. With insert 1 coming from K3 and insert 2 from C2 (fusion) the steps will repeated until maximum number of inserts is reached <br>
+
5. With insert 1 coming from K3 and insert 2 from C2 (fusion) the steps will repeated until maximum number of inserts is reached. <br>
  
  
6. The assembly needs to be done for all 3 cassettes simultaneously after each step
+
6. The assembly needs to be done for all 3 cassettes simultaneously after each step.
 
<br>
 
<br>
7. Transformation of ligation into competent cells (see transformation protocol)
+
7. Transformation of ligation into competent cells (see transformation protocol).
 
<br>
 
<br>
8. Selection with corresponding antibiotics </div>
+
8. Selection with corresponding antibiotics. </div>
 
<br>
 
<br>
 
<div style="text-indent:20px;">5. Next day</div>
 
<div style="text-indent:20px;">5. Next day</div>
  
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Colony pcr and gel run to check for sizes of cassettes
+
1. Colony pcr and gel run to check for sizes of cassettes.
 
<br>
 
<br>
2. Miniprep and check concentration via nanodrop</div>
+
2. Miniprep and check concentration via nanodrop.</div>
 
<br> <br>
 
<br> <br>
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:15pt;"></sup><sup>[1]
+
<p style="font-size:10pt;"><sup>[1]</sup>
http://parts.igem.org/Help:Protocols/3A_Assembly</p>
+
http://parts.igem.org/Help:Protocols/3A_Assembly (accessed 31 October 2017)</p>
 
  </div></div></div>
 
  </div></div></div>
  
Line 230: Line 253:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Colony PCR" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Colony PCR" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
  
<b>Colony PCR with ALLin™ Red Taq Mastermix, 2X: </b>
+
<br>  
<br> <br>
+
 
<div alignt="justify">
 
<div alignt="justify">
<b>1. Aim </b><br>
+
<b>1. Aim </b><br><br>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
 
1. Is the insert DNA in the plasmid present or absent? </div>
 
1. Is the insert DNA in the plasmid present or absent? </div>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
2. Much easier than to isolate and purify the vector </div>
+
2. Much easier than to isolate and purify the vector. </div>
<br> <br>
+
<br>  
<b> 2. Good to know before the start </b> <br>
+
<b> 2. Good to know before the start </b> <br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
1. Take typical measures to prevent PCR cross over contamination, keep your bench clean, wear gloves, use sterile tubes and filter pipet tips
+
1. Take typical measures to prevent PCR cross over contamination, keep your bench clean, wear gloves, use sterile tubes and filter pipet tips.
 
<br>
 
<br>
 
2. Include a no-template control and positive control in parallel. <br>
 
2. Include a no-template control and positive control in parallel. <br>
  
3. Thaw and keep reagents on ice <br>
+
3. Thaw and keep reagents on ice. <br>
  
 
4. Mix well before use.  <br>
 
4. Mix well before use.  <br>
Line 254: Line 276:
 
5. The longer the amplicon, the longer the extension time: Use 15 sec/kb extension. <br>
 
5. The longer the amplicon, the longer the extension time: Use 15 sec/kb extension. <br>
  
6. Use 90 sec extension for multiplexing <br>
+
6. Use 90 sec extension for multiplexing. <br>
  
 
7. Run an annealing temperature gradient from 55 °C to 65 °C to choose the best specificity conditions. Do not use fast cycling for multiplexing.  <br>
 
7. Run an annealing temperature gradient from 55 °C to 65 °C to choose the best specificity conditions. Do not use fast cycling for multiplexing.  <br>
  
8. ALLin™ Red Taq Mastermix, 2X is premixed with red dye and density reagents for direct loading on the gels after the PCR.In a 2% agarose TAE gel the dye migrates with ~350 bp  DNA, in 1% agarose TAE gel with ~600 bp DNA fragments </div>
+
8. ALLin™ Red Taq Mastermix, 2X is premixed with red dye and density reagents for direct loading on the gels after the PCR. In a 2 % agarose TAE gel the dye migrates with ~350 bp  DNA, in 1 % agarose TAE gel with ~600 bp DNA fragments. </div>
 
<br> <br>
 
<br> <br>
<b>3. Are you working with <i> A. E.coli </i> or B.yeast?</b>
+
 
 +
<b>3. Are you working with <i> A. E.coli </i> or B. yeast?</b>
 
<br> <br>
 
<br> <br>
 
<div style="text-indent:20px;">
 
<div style="text-indent:20px;">
<b>A.step by step for E.coli: </b> <br>  
+
<b>A.step by step for <i>E.coli</i>: </b> <br> <br>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
1. Resuspend colonies </div>
+
1. Resuspend colonies. </div>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
2. Prepare masterplate </div>
+
2. Prepare masterplate. </div>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
3. Prepare a PCR master mix  (always prepare at least 10 % more) </div>
+
3. Prepare a PCR master mix  (always prepare at least 10 % more). </div>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
 
4. Mix gently, avoid bubbles.  </div>
 
4. Mix gently, avoid bubbles.  </div>
Line 279: Line 302:
 
7. Do not forget the negative control! </div>
 
7. Do not forget the negative control! </div>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
8. Close tube </div>
+
8. Close tube. </div>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
 
9. Perform the PCR using Thermocycler as follow: </div>
 
9. Perform the PCR using Thermocycler as follow: </div>
 
<br>  
 
<br>  
<style type="text/css">
+
<table>
.tg  {border-collapse:collapse;border-spacing:0;}
+
<tr>
.tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
+
    <th align="center"><b>Steps</b></th>
.tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
+
    <th align="center"><b>Cycles</b></th>
.tg .tg-yw4l{vertical-align:top}
+
    <th align="center"><b>Temperature</b></th>
</style>
+
    <th align="center"><b>Time</b></th>
<table class="tg">
+
  </tr>
 
   <tr>
 
   <tr>
     <th class="tg-031e"><b>Initial denaturation</b><br></th>
+
     <th align="center"><b>Initial denaturation</b><br></th>
     <th class="tg-yw4l"align="center">1 cycle<br></th>
+
     <th align="center">1 cycle<br></th>
     <th class="tg-yw4l"align="center">95°C</th>
+
     <th align="center">95°C</th>
     <th class="tg-yw4l"align="center">60s</th>
+
     <th align="center">60s</th>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l"><b>Denaturation</b></td>
+
     <td align="center"><b>Denaturation</b></td>
     <td class="tg-yw4l"align="center">30-40 cycles<br></td>
+
     <td align="center">30-40 cycles<br></td>
     <td class="tg-yw4l"align="center">95°C</td>
+
     <td align="center">95°C</td>
     <td class="tg-yw4l"align="center">15s</td>
+
     <td align="center">15s</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l"><b>Annealing</b></td>
+
     <td align="center"><b>Annealing</b></td>
     <td class="tg-yw4l"align="center">30-40 cycles<br></td>
+
     <td align="center">30-40 cycles<br></td>
     <td class="tg-yw4l"align="center">55-65°C</td>
+
     <td align="center">55-65°C</td>
     <td class="tg-yw4l"align="center">15s</td>
+
     <td align="center">15s</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l"><b>Extension</b></td>
+
     <td align="center"><b>Extension</b></td>
     <td class="tg-yw4l"align="center">30-40 cycles<br></td>
+
     <td align="center">30-40 cycles<br></td>
     <td class="tg-yw4l"align="center">72°C</td>
+
     <td align="center">72°C</td>
     <td class="tg-yw4l"align="center">15-90s (15 sec per 1 kb)</td>
+
     <td align="center">15-90s (15 sec per 1 kb)</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l"><b>Final extension</b></td>
+
     <td align="center"><b>Final extension</b></td>
     <td class="tg-yw4l"align="center">1 cycle<br></td>
+
     <td align="center">1 cycle<br></td>
     <td class="tg-yw4l"align="center">72°C</td>
+
     <td align="center">72°C</td>
     <td class="tg-yw4l"align="center">5 min<br></td>
+
     <td align="center">5 min<br></td>
 
   </tr>
 
   </tr>
 
</table>
 
</table>
 
<br>  
 
<br>  
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
10. Store probes for short time on ice, for long at -20°C </div>
+
10. Store probes for short time on ice, for long at -20 °C. </div>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
 
11. Load probes on the agarose gel e.g. 10 μl (so in case you have enough left for another round). </div>
 
11. Load probes on the agarose gel e.g. 10 μl (so in case you have enough left for another round). </div>
Line 329: Line 352:
 
<div style="text-indent:20px;">
 
<div style="text-indent:20px;">
 
<b>B. Step by step  for yeast: </b></div>
 
<b>B. Step by step  for yeast: </b></div>
<div style="text-align: justify; margin-left:40px">
+
<div style="text-align: justify; margin-left:40px"><br>
 
1. If resuspended colonies are to be used: pipette 50 μl of a 0.02 M NaOH  solution into each of a set of  appropriately labelled PCR tubes or wells of a PCR plate. Using sterile pipette tips or toothpicks, transfer transformants to individual tubes/wells. The amount of cells  resuspended must just be  visible. Resuspend cells by pipetting or vortexing and incubate for  
 
1. If resuspended colonies are to be used: pipette 50 μl of a 0.02 M NaOH  solution into each of a set of  appropriately labelled PCR tubes or wells of a PCR plate. Using sterile pipette tips or toothpicks, transfer transformants to individual tubes/wells. The amount of cells  resuspended must just be  visible. Resuspend cells by pipetting or vortexing and incubate for  
 
≥ 5 min at 37 °C. <br>
 
≥ 5 min at 37 °C. <br>
 
2. If overnight cultures are to be used: pipette 40 μl of a 0.01 M NaOH solution into each of a set of appropriately labelled PCR tubes or wells of a PCR plate. Transfer 10 μl of each overnight culture to be tested to the appropriate tube/well and mix by pipetting up and down. Incubate for ≥ 5 min at 37 °C. <br>
 
2. If overnight cultures are to be used: pipette 40 μl of a 0.01 M NaOH solution into each of a set of appropriately labelled PCR tubes or wells of a PCR plate. Transfer 10 μl of each overnight culture to be tested to the appropriate tube/well and mix by pipetting up and down. Incubate for ≥ 5 min at 37 °C. <br>
  
3. Prepare a PCR master mix (always prepare at least 10 % more, use the excel sheet to calculate)<br>
+
3. Prepare a PCR master mix (always prepare at least 10 % more).<br>
  
 
4. Aliquot 22.5 μl of PCR master mix into each PCR tube. <br>
 
4. Aliquot 22.5 μl of PCR master mix into each PCR tube. <br>
Line 343: Line 366:
  
 
7. Perform the PCR using the following cycling profile: </div><br>
 
7. Perform the PCR using the following cycling profile: </div><br>
<style type="text/css">
+
<table>
.tg  {border-collapse:collapse;border-spacing:0;}
+
<tr>
.tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
+
    <th align="center"><b>Steps</b></th>
.tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
+
    <th align="center"><b>Cycles</b></th>
.tg .tg-yw4l{vertical-align:top}
+
    <th align="center"><b>Temperature</b></th>
</style>
+
    <th align="center"><b>Time</b></th>
<table class="tg">
+
  </tr>
 
   <tr>
 
   <tr>
     <th class="tg-031e">Initial denaturation<br></th>
+
     <th align="center"><b>Initial denaturation</b><br></th>
     <th class="tg-yw4l">1 cycle<br></th>
+
     <th align="center">1 cycle<br></th>
     <th class="tg-yw4l">95°C</th>
+
     <th align="center">95°C</th>
     <th class="tg-yw4l">60s</th>
+
     <th align="center">60s</th>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">Denaturation</td>
+
     <td align="center"><b>Denaturation</b></td>
     <td class="tg-yw4l">30-40 cycles<br></td>
+
     <td align="center">30-40 cycles<br></td>
     <td class="tg-yw4l">95°C</td>
+
     <td align="center">95°C</td>
     <td class="tg-yw4l">15s</td>
+
     <td align="center">15s</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">Annealing</td>
+
     <td align="center"><b>Annealing</b></td>
     <td class="tg-yw4l">30-40 cycles<br></td>
+
     <td align="center">30-40 cycles<br></td>
     <td class="tg-yw4l">55-65°C</td>
+
     <td align="center">55-65°C</td>
     <td class="tg-yw4l">15s</td>
+
     <td align="center">15s</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">Extension</td>
+
     <td align="center"><b>Extension</b></td>
     <td class="tg-yw4l">30-40 cycles<br></td>
+
     <td align="center">30-40 cycles<br></td>
     <td class="tg-yw4l">72°C</td>
+
     <td align="center">72°C</td>
     <td class="tg-yw4l">15-90s</td>
+
     <td align="center">15-90s</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">Final extension<br></td>
+
     <td align="center"><b>Final extension</b></td>
     <td class="tg-yw4l">1 cycle<br></td>
+
     <td align="center">1 cycle<br></td>
     <td class="tg-yw4l">72°C</td>
+
     <td align="center">72°C</td>
     <td class="tg-yw4l">5 min<br></td>
+
     <td align="center">5 min<br></td>
 
   </tr>
 
   </tr>
 
</table>
 
</table>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
8. Load probes on the agarose gel </div>
+
8. Load probes on the agarose gel. </div>
 
<div style="text-indent:40px;">
 
<div style="text-indent:40px;">
9. Store probes for short time on ice, for long at -20°C </div>
+
9. Store probes for short time on ice, for long at -20°C. </div>
<br> <br>
+
<br>  
  
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:15pt;"></sup><sup>[1]https://www.highqu.com/media/wysiwyg/ressources/manuals/PCM02_ALLin_Red_Taq_Mastermix_PI.pdf </p>
+
<p style="font-size:15pt;"></sup><sup>[1]https://www.highqu.com/media/wysiwyg/ressources/manuals/PCM02_ALLin_Red_Taq_Mastermix_PI.pdf (accessed 31 October 2017) </p>
  
 
</div></div></div>
 
</div></div></div>
 
 
  
  
Line 400: Line 421:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="DNA Purification" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="DNA Purification" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
<br>
 
<b>DNA Purification with the Wizard® SV Gel and PCR Clean-Up System</b>
 
 
<br><br>
 
<br><br>
 +
<b>1. Aim </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Purification of DNA
 +
after a gel electrophoresis</div><br> <br>
 +
<b> 2. Steps </b> <br> <br>
 
<p align="center"><b>1. Depending on the PCR product</b> <p>
 
<p align="center"><b>1. Depending on the PCR product</b> <p>
 
<table>
 
<table>
Line 426: Line 450:
  
 
<b>2. Binding of DNA </b>
 
<b>2. Binding of DNA </b>
<br> <br><div style="text-indent:40px;">
+
<br><br><div style="text-align: justify; margin-left:40px">
1.  Insert SV Minicolumn into Collection Tube.</div>
+
1.  Insert SV Minicolumn into Collection Tube.<br>
<div style="text-indent:40px;">
+
2.  Transfer dissolved gel mixture or prepared PCR product to the Minicolumn assembly. Incubate at room temperature for 1 minute.
2.  Transfer dissolved gel mixture or prepared PCR product to the Minicolumn assembly. <div style="text-indent:60px;">Incubate
+
<br>
at room temperature for 1 minute.</div></div>
+
3.  Centrifuge at 16,000 ×g for 1 minute. Discard flowthrough and reinsert Minicolumn
<div style="text-indent:40px;">
+
into Collection Tube.<br>
3.  Centrifuge at 16,000 ×g for 1 minute. <div style="text-indent:60px;">Discard flowthrough and reinsert Minicolumn
+
into Collection Tube.</div></div>
+
<div style="text-indent:40px;">
+
 
4. Heat NE-buffer to 70 °C.</div>
 
4. Heat NE-buffer to 70 °C.</div>
 
<br>  
 
<br>  
 
<b>3. Washing </b>  
 
<b>3. Washing </b>  
<br> <br><div style="text-indent:40px;">
+
<br><br><div style="text-align: justify; margin-left:40px">
 
1.  Add 700 μl Membrane Wash Solution (ethanol added). Centrifuge at 16,000 × g for 1 minute.
 
1.  Add 700 μl Membrane Wash Solution (ethanol added). Centrifuge at 16,000 × g for 1 minute.
<div style="text-indent:60px;">Discard flowthrough and reinsert Minicolumn into Collection Tube.</div></div>
+
Discard flowthrough and reinsert Minicolumn into Collection Tube.<br>
<div style="text-indent:40px;">
+
 
2.  Repeat Step 4 with 500 μl Membrane Wash Solution. Centrifuge at 16,000 × g for 5 minutes.</div>
+
2.  Repeat Step 4 with 500 μl Membrane Wash Solution. Centrifuge at 16,000 × g for 5 minutes.<br>
<div style="text-indent:40px;">
+
 
 
3.  Empty the Collection Tube and recentrifuge the column assembly for 1 minute with the
 
3.  Empty the Collection Tube and recentrifuge the column assembly for 1 minute with the
<div style="text-indent:60px;">microcentrifuge lid open(or off to allow evaporation of any residual ethanol.</div></div>
+
microcentrifuge lid open(or off to allow evaporation of any residual ethanol.</div>
 
<br>  
 
<br>  
 
<b>4. Elution</b>
 
<b>4. Elution</b>
<br> <br><div style="text-indent:40px;">
+
<br><br><div style="text-align: justify; margin-left:40px">
1.  Carefully transfer Minicolumn to a clean 1.5 ml microcentrifuge tube.</div>
+
1.  Carefully transfer Minicolumn to a clean 1.5 ml microcentrifuge tube.<br>
<div style="text-indent:40px;">
+
 
2.  Add 50 μl of Nuclease-Free Water to the Minicolumn. Incubate at room temperature for 1 minute. <div style="text-indent:60px;">Centrifuge at 16,000 × g for 1 minute.</div></div>
+
2.  Add 50 μl of Nuclease-Free Water to the Minicolumn. Incubate at room temperature for 1 minute. Centrifuge at 16,000 × g for 1 minute. <br>
<div style="text-indent:40px;">
+
 
3.  Discard Minicolumn and measure the concentration.</div>
+
3.  Discard Minicolumn and measure the concentration.<br>
<div style="text-indent:40px;">
+
 
 
4. Store DNA at 4°C or –20°C.</div>
 
4. Store DNA at 4°C or –20°C.</div>
 
<br>
 
<br>
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protcards/wizard-sv-gel-and-pcr-clean-up-system-quick-protocol.pdf?la=de-de</p>
+
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protcards/wizard-sv-gel-and-pcr-clean-up-system-quick-protocol.pdf?la=de-de (accessed 31 October 2017)</p>
 
</div></div></div>
 
</div></div></div>
  
Line 467: Line 488:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Gel electrohoresis" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Gel electrohoresis" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<div align="justify">
 
<div align="justify">
<b>1. What is it ? </b>
+
<br>
 +
<b>1. What is it ? </b><br><br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Standard lab procedure for separating DNA by size (e.g., length in base pairs) for visualization and purification <br>
+
1. Standard lab procedure for separating DNA by size (e.g., length in base pairs) for visualization and purification. <br>
  
2. Uses an electrical field to move the negatively charged DNA through an agarose gel matrix  toward a positive electrode <br>
+
2. Uses an electrical field to move the negatively charged DNA through an agarose gel matrix  toward a positive electrode. <br>
  
3. Shorter DNA fragments migrate through the gel more quickly than longer ones </div>
+
3. Shorter DNA fragments migrate through the gel more quickly than longer ones. </div>
 
<br>   
 
<br>   
<b>2. Why are we doing it ? </b> <br>
+
<b>2. Why are we doing it ? </b> <br><br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. to determine the approximate length of a DNA fragment by running it on an agarose gel alongside a DNA ladder (a collection of DNA fragments of known lengths) </div>
+
1. to determine the approximate length of a DNA fragment by running it on an agarose gel alongside a DNA ladder (a collection of DNA fragments of known lengths). </div>
 
<br>
 
<br>
 
<div align="justify">
 
<div align="justify">
<b>3. Protocol  </b> <br>
+
<b>3. Protocol  </b> <br><br>
 
<div style="text-indent:20px;">
 
<div style="text-indent:20px;">
 
1. Pouring a Standard 1% Agarose Gel: </div>
 
1. Pouring a Standard 1% Agarose Gel: </div>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Measure 1g agarose and and mix it with 100ml of TBE in a microwaveable flask. <br>
+
1. Measure 1g agarose and and mix it with 100 ml of TBE in a microwaveable flask. <br>
Note:  Agarose gels are commonly used in concentrations of 0.7 % to 2 % depending on the size of bands needed to be separated -  Simply adjust the mass of agarose in a given volume to make gels of other agarose concentrations (e.g., 2 g of agarose in 100 mL of TAE will make a 2% gel).  <br>  
+
Note:  Agarose gels are commonly used in concentrations of 0.7 % to 2 % depending on the size of bands needed to be separated -  Simply adjust the mass of agarose in a given volume to make gels of other agarose concentrations (e.g., 2 g of agarose in 100 mL of TAE will make a 2 % gel).  <br>  
  
 
2. Microwave for 1-3 min until the agarose is completely dissolved (but do not overboil the solution, as some of the buffer will evaporate and thus alter the final percentage of agarose in the gel. Many people prefer to microwave in pulses, swirling the flask occasionally as the solution heats up.). <br>
 
2. Microwave for 1-3 min until the agarose is completely dissolved (but do not overboil the solution, as some of the buffer will evaporate and thus alter the final percentage of agarose in the gel. Many people prefer to microwave in pulses, swirling the flask occasionally as the solution heats up.). <br>
Line 494: Line 516:
 
Note: gloves and glasses ! Caution HOT! Be careful stirring, eruptive boiling can occur.<br>
 
Note: gloves and glasses ! Caution HOT! Be careful stirring, eruptive boiling can occur.<br>
 
It is a good idea to microwave for 30-45 sec, stop and swirl, and then continue towards a boil. Keep an eye on it as the initial boil has a tendency to boil over. Placing saran wrap over the top of the flask can help with this, but is not necessary if you pay close attention. </div>
 
It is a good idea to microwave for 30-45 sec, stop and swirl, and then continue towards a boil. Keep an eye on it as the initial boil has a tendency to boil over. Placing saran wrap over the top of the flask can help with this, but is not necessary if you pay close attention. </div>
<br> <br>
+
<br>
<b> 4.Pouring of the gel </b> <br>
+
<b> 4. Pouring of the gel </b> <br><br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Let agarose solution cool down to about 50°C (about when you can comfortably keep your hand on the flask), about 5 mins. <br>
+
1. Let agarose solution cool down to about 50 °C (about when you can comfortably keep your hand on the flask), about 5 mins. <br>
Note:  or cool down in water bath about 30 min <br>
+
Note:  Or cool down in water bath about 30 min. <br>
 
2. Add ethidium bromide (EtBr) to a final concentration of approximately 0.2-0.5 μg/mL (usually about 2-3 μl of lab stock solution per 100 mL gel). EtBr binds to the DNA and allows you to visualize the DNA under ultraviolet (UV) light. <br>
 
2. Add ethidium bromide (EtBr) to a final concentration of approximately 0.2-0.5 μg/mL (usually about 2-3 μl of lab stock solution per 100 mL gel). EtBr binds to the DNA and allows you to visualize the DNA under ultraviolet (UV) light. <br>
 
Note:  Caution EtBr is a known mutagen. Wear a lab coat, eye protection and gloves when working  
 
Note:  Caution EtBr is a known mutagen. Wear a lab coat, eye protection and gloves when working  
Line 504: Line 526:
 
the gel. <br>
 
the gel. <br>
 
3. Pour the agarose into a gel tray with the well comb in place. <br>
 
3. Pour the agarose into a gel tray with the well comb in place. <br>
  Note: Think about witch gel tray size you need. (a small one or a big one.)<br>
+
  Note: Think about witch gel tray size you need (a small one or a big one).<br>
 
  Pour slowly to avoid bubbles which will disrupt the gel. Any bubbles can be pushed away from the well comb or towards the sides/edges of the gel with a pipette trip. <br>  
 
  Pour slowly to avoid bubbles which will disrupt the gel. Any bubbles can be pushed away from the well comb or towards the sides/edges of the gel with a pipette trip. <br>  
 
4. Let the newly poured gel sit at room temperature for 20-30 mins, until it has completely solidified. <br>
 
4. Let the newly poured gel sit at room temperature for 20-30 mins, until it has completely solidified. <br>
 
if  you are in a hurry the gel can also be set more quickly if you place the gel tray at 4 °C  
 
if  you are in a hurry the gel can also be set more quickly if you place the gel tray at 4 °C  
earlier so that it is already cold when the gel is poured into it. </div> <br> <br>
+
earlier so that it is already cold when the gel is poured into it. </div> <br>
<b>5. Loading Samples and Running an Agarose Gel: </b>
+
<b>5. Loading Samples and Running an Agarose Gel </b>
<br> <br>
+
<br><br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
1. Add loading buffer to each of your digest samples. <br>
 
1. Add loading buffer to each of your digest samples. <br>
Line 547: Line 569:
 
little time as possible to minimize damage to the DNA.<br>
 
little time as possible to minimize damage to the DNA.<br>
 
Note:
 
Note:
The fragments of DNA are usually referred to as ‘bands’ due to their appearance on the gel.<br></div>
+
The fragments of DNA are usually referred to as ‘bands’ due to their appearance on the gel.<br></div><br>
<b>6.Analyzing Your Gel</b>
+
 
 +
<b>6. Analyzing Your Gel</b><br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
 
Using the DNA ladder in the first lane as a guide (the manufacturer's instruction will tell you the  
 
Using the DNA ladder in the first lane as a guide (the manufacturer's instruction will tell you the  
Line 556: Line 579:
 
Diagnostic Digest  
 
Diagnostic Digest  
 
page. </div><br>
 
page. </div><br>
<b>7. Purifying DNA from Your Gel</b>
+
<b>7. Purifying DNA from Your Gel</b><br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
 
If you are conducting certain procedures, such as molecular cloning, you will need to purify the  
 
If you are conducting certain procedures, such as molecular cloning, you will need to purify the  
 
DNA away from the agarose gel. For instructions on how to do this, visit the  
 
DNA away from the agarose gel. For instructions on how to do this, visit the  
 
Gel Purification  
 
Gel Purification  
page<br></div>
+
page.<br></div><br> <br><br>
 +
<hr size="10" noshade></hr>
 +
 
 +
<p style="font-size:15pt;"><sup>[1]
 +
http://www.addgene.org/protocols/gel-electrophoresis/ (accessed 31 October 2017)</p>
  
 
  </div></div></div>
 
  </div></div></div>
 +
 +
 +
<div class="spoiler">   
 +
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Ligation" />   
 +
<div class="inner" style="display:none;">
 +
<div align="justify">
 +
<br> <br>
 +
<b>1. Aim </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Enzymatically linkage of two DNA/RNA segments. <br><br>
 +
</div>
 +
<b> 2. Steps </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Set up the following reaction in a microcentrifuge tube on ice.<br></div><br> <br>
 +
<table>
 +
  <tr>
 +
    <th  width="50%" align="center"><b>component</b></th>
 +
    <th  width="50%" align="center"><b>volume</b></th>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">T4 DNA Ligase Buffer (10 x)</td>
 +
    <td align="center">2 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">10x buffer</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">T4 DNA Ligase</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center"> Vector DNA </td>
 +
    <td align="center"></td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">Insert DNA</td>
 +
    <td align="center"></td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">Nuclease-free water </td>
 +
    <td align="center"> to 20 µl</td>
 +
  </tr>
 +
</table>
 +
 +
<div style="text-align: justify; margin-left:60px"> 
 +
1. Calculation of the DNA
 +
<br>
 +
 +
kb (smaller DNA)/ kb (larger DNA)&sdot;mass (Vector DNA)&sdot;relation (Insert DNA)
 +
<br> <br>
 +
Example calculation </div>
 +
<div style="text-align: justify; margin-left:80px">
 +
1:3 vector to insert <br>
 +
mass Vector DNA: 100 ng <br>
 +
Vector DNA: 10 kb <br>
 +
Insert DNA: 3 kb<br><br>
 +
3 kb/ 10 kb&sdot;100 ng&sdot;3 = 90 ng</div>
 +
 +
<div style="text-align: justify; margin-left:60px">
 +
2. T4 DNA Ligase should be added last.<br>
 +
3. Use nebiocalculator.neb.com/#!/ to calculate molar ratios. <br>
 +
4. The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature. </div>
 +
<div style="text-align: justify; margin-left:20px">
 +
2. Gently mix the reaction by pipetting up and down and microfuge briefly.<br>
 +
3. Incubation </div>
 +
<div style="text-align: justify; margin-left:60px">
 +
1. Cohesive (sticky) ends. </div>
 +
<div style="text-align: justify; margin-left:80px"> 1. 16 °C overnight or room temperature for 10 minutes. </div>
 +
<div style="text-align: justify; margin-left:60px">
 +
2. Blunt ends or single base overhangs. </div>
 +
<div style="text-align: justify; margin-left:80px">
 +
1. 16°C overnight or room temperature for 2 hours (alternatively, high concentration T4 DNA Ligase can be used in a 10 minute ligation). </div>
 +
<div style="text-align: justify; margin-left:20px">
 +
4.Heat inactivate at 65°C for 10 minutes. <br>
 +
5. Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells.</div>
 +
<br> <br>
 +
<hr size="10" noshade></hr>
 +
<p style="font-size:12pt;"><sup>[1]</sup>
 +
https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202 (accessed 31 October 2017)</p>
 +
</div></div></div></div>
  
  
Line 570: Line 678:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="PCR" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Miniprep"/>     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 +
 
<br> <br>
 
<br> <br>
<b>Protocol for PCR with Q5 High- Fidelity 2x Master Mix </b> <br><br>
+
<b> 1. Aim </b><br> <br>
<b>What is the PCR ? </b><br>
+
<div style="text-indent:20px;">
Method to make multiple copies of a  
+
Isolation of DNA as a plasmid</div>
the specific  DNA-sequence <br>
+
<br> <br>
 +
<b>2.Production of cleared lysate</b>
 +
<br><br>
 +
<div style="text-indent:20px;">
 +
1. Isolation of the bacteria </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.  Harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)
 +
of bacterial culture .
 +
<br>
 +
2. Centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge.
 +
<br>
 +
3. Pour off the supernatant.
 +
<br>
 +
4. Reinsert again bacterial culture to the pellet and repeat step 2 and 3.
 +
<br>
 +
5. Blot the inverted tube on a paper towel to remove excess media.
 +
<br> </div>
 +
<div style="text-indent:20px;">
 +
2.
 +
Resuspension of the cells </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 250 μl of Cell Resuspension Solution.
 +
<br>
 +
2.
 +
Completely resuspend the cell pellet by vortexing or pipetting.
 +
<br>
 +
3.
 +
It is essential to thoroughly resuspend the cells.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
3.
 +
Lysing </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 250 μl of Cell Lysis Solution.
 +
<br>
 +
2.
 +
Mix by inverting the tube 4 times - do not vortex.
 +
<br>
 +
3.
 +
Incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes).
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
4.
 +
Splitting proteins </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 10 μl of Alkaline Protease Solution.
 +
<br>
 +
2.
 +
Mix by inverting the tube 4 times - do not vortex.
 +
<br>
 +
3.
 +
Incubate for 5 minutes at room temperature.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
5.
 +
Neutralization </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 350 μl of Neutralization Solution.
 +
<br>
 +
2.
 +
Immediately mix by inverting the tube 4 times - do not vortex.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
6.
 +
Isolation of the plasmids </div>
  
Please note that protocols with
+
<div style="text-align: justify; margin-left:40px">
Q5 High-Fidelity DNA Polymerase may differ from protocols
+
1.
with other polymerases. Conditions recommended below should be used for optimal
+
Centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature.
performance.<br>
+
<br> <br>
 +
<br></div>
 +
<b>3. Isolation of the plasmid DNA </b>
 +
<br><br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Transfer the cleared lysate (approximately 850 μl, Section 3.B, Step 6) to the
 +
prepared Spin Column by decanting. Avoid disturbing or transferring any of the
 +
white precipitate with the supernatant. </div>
 +
 
 +
<div style="text-align: justify; margin-left:40px">
 +
1. If the white precipitate is accidentally transferred to the Spin Column, pour
 +
the Spin Column contents back into a sterile 1.5ml microcentrifuge tube
 +
and centrifuge for another 5–10 minutes at maximum speed. Transfer the
 +
resulting supernatant into the same Spin Column that was used initially for
 +
this sample. The Spin Column can be reused but only for this sample.</div>
  
<b>Reaction Setup</b>
 
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
1. assemble all reaction components on ice, work on ice while assembling <br>
+
2. Centrifuge the supernatant at maximum speed in a microcentrifuge for 1 minute at
 +
room temperature. Remove the Spin Column from the tube and discard the
 +
flowthrough from the Collection Tube. Reinsert the Spin Column into the Collection
 +
Tube. </div>
  
2. preheat the thermocycler to the denaturation temperature( 98 °C) <br>
+
<div style="text-align: justify; margin-left:20px">
 +
3. Wash the plasmid DNA. </div>
  
3. prior to use all components should be mixed <br>
+
<div style="text-align: justify; margin-left:40px">
 +
1. Add 750 μl of Column Wash Solution.
 +
<br>
 +
2. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room
 +
temperature.
 +
<br>
 +
3. Remove the Spin Column from the tube and discard the flowthrough.
 +
<br>
 +
4. Reinsert the Spin Column into the Collection Tube.
 +
<br></div>
 +
<div style="text-align: justify; margin-left:20px">
 +
4. Wash again the plasmid DNA. </div>
  
4. work quickly when transferring the reactions to a thermocycler </div>
 
<b>Steps </b>
 
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Assemble all components on ice for the reaction :
+
1. Add 250 μl of Column Wash Solution.
<style type="text/css">
+
<br>
.tg  {border-collapse:collapse;border-spacing:0;}
+
2. Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room
.tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
+
temperature.
.tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
+
<br>
.tg .tg-yw4l{vertical-align:top}
+
3. If the Spin Column has Column Wash Solution associated with it,
</style>
+
centrifuge again for 1 minute at maximum speed.
<table class="tg">
+
<br>
 +
4. Transfer the Spin Column to a new, sterile 1.5ml microcentrifuge tube, being
 +
careful not to transfer any of the Column Wash Solution with the Spin Column.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
5. Elute the plasmid DNA </div>
 +
 
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 50 μl of Nuclease-Free Water to the Spin Column, wait 5 minutes
 +
<br>
 +
2. Centrifuge at maximum speed for 1 minute at room temperature in a
 +
microcentrifuge.
 +
<br></div>
 +
<div style="text-align: justify; margin-left:20px">
 +
6. After eluting the DNA, remove the assembly from the 1.5ml microcentrifuge tube
 +
and discard the Spin Column.</div>
 +
<br>
 +
<hr size="10" noshade></hr>
 +
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/wizard-plus-sv-minipreps-dna-purification-system-protocol.pdf (accessed 31 October 2017)</p>
 +
</div></div>
 +
 
 +
 
 +
<div class="spoiler">   
 +
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="PCR" />   
 +
<div class="inner" style="display:none;">
 +
<br> <br>
 +
 
 +
<b>1. What is the PCR ? </b><br><br>
 +
<b>p</b>olymerase <b>c</b>hain <b>r</b>eaction<br>
 +
Method to make multiple copies of a
 +
the specific  DNA-sequence <br><br>
 +
 
 +
 
 +
<b>2. Reaction Setup</b><br><br>
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Assemble all reaction components on ice, work on ice while assembling. <br>
 +
 
 +
2. Preheat the thermocycler to the denaturation temperature (98 °C). <br>
 +
 
 +
3. Prior to use all components should be mixed. <br>
 +
 
 +
4. Work quickly when transferring the reactions to a thermocycler. </div><br><br>
 +
<b>3. Steps </b><br><br>
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Assemble all components on ice for the reaction :<br><br>
 +
<table>
 
   <tr>
 
   <tr>
     <th class="tg-yw4l">Component</th>
+
     <th class="tg-yw4l" align="center"><b>Component</b></th>
     <th class="tg-yw4l">25 μl Reaction</th>
+
     <th class="tg-yw4l" align="center"><b>25 μl Reaction</b></th>
     <th class="tg-yw4l">
+
     <th class="tg-yw4l" align="center"><b>
50 μl Reaction</th>
+
50 μl Reaction</b></th>
     <th class="tg-yw4l">Final Concentration</th>
+
     <th class="tg-yw4l" align="center"><b>Final Concentration</b></th>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">Q5
+
     <td class="tg-yw4l" align="center"><b>Q5
High-Fidelity 2X Master Mix</td>
+
High-Fidelity 2X Master Mix</b></td>
     <td class="tg-yw4l">12.5 μl</td>
+
     <td class="tg-yw4l" align="center">12.5 μl</td>
     <td class="tg-yw4l">25 μl</td>
+
     <td class="tg-yw4l" align="center">25 μl</td>
     <td class="tg-yw4l">1X</td>
+
     <td class="tg-yw4l" align="center">1X</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">10 μM Forward Primer</td>
+
     <td class="tg-yw4l" align="center"><b>10 μM Forward Primer</b></td>
     <td class="tg-yw4l">1.25 μl</td>
+
     <td class="tg-yw4l" align="center">1.25 μl</td>
     <td class="tg-yw4l">
+
     <td class="tg-yw4l" align="center">
 
2.5 μl</td>
 
2.5 μl</td>
     <td class="tg-yw4l">0.5 μM</td>
+
     <td class="tg-yw4l"align="center">0.5 μM</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">
+
     <td class="tg-yw4l"align="center">
10 μM Reverse Primer</td>
+
<b>10 μM Reverse Primer</b></td>
     <td class="tg-yw4l">1.25 μl</td>
+
     <td class="tg-yw4l"align="center">1.25 μl</td>
     <td class="tg-yw4l">2.5 μl</td>
+
     <td class="tg-yw4l"align="center">2.5 μl</td>
     <td class="tg-yw4l">0.5 μM</td>
+
     <td class="tg-yw4l"align="center">0.5 μM</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">
+
     <td class="tg-yw4l"align="center">
Template DNA</td>
+
<b>Template DNA</b></td>
     <td class="tg-yw4l">variable</td>
+
     <td class="tg-yw4l"align="center">variable</td>
     <td class="tg-yw4l">variable</td>
+
     <td class="tg-yw4l"align="center">variable</td>
     <td class="tg-yw4l">< 1,000 ng</td>
+
     <td class="tg-yw4l"align="center">< 1,000 ng</td>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l">
+
     <td class="tg-yw4l"align="center">
Nuclease-Free Water</td>
+
<b>Nuclease-Free Water</b></td>
     <td class="tg-yw4l">to 25 μl</td>
+
     <td class="tg-yw4l"align="center">to 25 μl</td>
     <td class="tg-yw4l">to 50 μl</td>
+
     <td class="tg-yw4l"align="center">to 50 μl</td>
     <td class="tg-yw4l"></td>
+
     <td class="tg-yw4l"align="center"></td>
 
   </tr>
 
   </tr>
 
</table>
 
</table>
Line 654: Line 902:
 
necessary. Overlay the sample with mineral oil if using a PCR machine without a heated lid.<br>
 
necessary. Overlay the sample with mineral oil if using a PCR machine without a heated lid.<br>
 
2. Transfer PCR tubes to a PCR machine and begin thermocycling.</div>
 
2. Transfer PCR tubes to a PCR machine and begin thermocycling.</div>
 +
<br> <br>
  
 
+
<b>4. Steps  
<b>Steps  
+
 
of
 
of
  PCR</b><br>
+
  PCR</b><br><br>
<div style="text-align: justify; margin-left:20px">
+
<div style="text-align: justify; margin-left:40px">
1.Denaturation : double- stranded template DNA is heated to separate it into two single stands <br>
+
1.Denaturation : double- stranded template DNA is heated to separate it into two single stands. <br>
2. Annealing    :  temperature is lowered to enable the DNA primers to attach to the template DNA <br>
+
2. Annealing    :  temperature is lowered to enable the DNA primers to attach to the template DNA. <br>
3. Extending    : temperature is raised and the new strand of DNA is made by the  polymerases <br></div>
+
3. Extending    : temperature is raised and the new strand of DNA is made by the  polymerases. <br>
Thermocycling Conditions for a Routine PCR:  
+
Thermocycling Conditions for a Routine PCR: </div><br>
STEP
+
<table>
TEMP
+
    <tr>
TIME
+
      <th align="center"><b>Step</b></th>
Initial Denaturation
+
      <th align="center"><b>Temperature</b></th>
98°C
+
      <th align="center"><b>Time</b></th>
30 seconds          
+
    </tr>
25–35 Cycles
+
    <tr>
98°C
+
      <td align="center"><b>Initial Denaturation</b></td>
5–10 seconds
+
      <td align="center">98°C</td>
*50–72°C
+
      <td align="center">30 seconds </td>
10–30
+
    </tr>
seconds
+
    <tr>
72°C
+
      <td align="center"><b></b></td>
20–30
+
      <td align="center">98°C</td>
seconds
+
      <td align="center">5–10 seconds</td>
/kb
+
    </tr>
Final Extension
+
  <tr>
72°C
+
      <td align="center"><b>25–35 Cycles</b></td>
2
+
      <td align="center">*50–72°C</td>
minutes
+
      <td align="center">10–30 seconds</td>
Hold
+
    </tr>
4–10°C
+
  <tr>
hold is not
+
      <td align="center"><b></b></td>
necessary
+
      <td align="center">72°C</td>
1.
+
      <td align="center">20–30 seconds/kb</td>
Template:
+
    </tr>
Use of high quality, purified DNA templates greatly enhances the success of PCR.
+
<tr>
Recommended amounts of DNA template for a 50 μl reaction are as follows:
+
      <td align="center"><b>Final Extension</b></td>
DNA
+
      <td align="center">72°C</td>
AMOUNT
+
      <td align="center">2 minutes</td>
DNA Genomic
+
    </tr>
1 ng–1 μg
+
<tr>
Plasmid or Viral
+
      <td align="center"><b>Hold</b></td>
1 pg–1 ng
+
      <td align="center">4-10°C</td>
2.
+
      <td align="center"></td>  
Primers:
+
    </tr>
Oligonucleotide primers are generally 20–40 nucleotides in length and ideally have a GC
+
</table>
content of 40–60%. Computer programs such as
+
Primer3
+
  can be used to design or analyze
+
primers. The best results are typically seen when using each primer at a final concentration
+
of 0.5 μM in the reaction.
+
3.
+
Mg
+
++
+
and additives:
+
The
+
Q5 High-Fidelity Master Mix contains 2.0
+
mM Mg
+
++
+
when used at a 1X concentration.
+
This is optimal for most PCR products generated with this master mix.
+
4.
+
Deoxynucleotides:
+
The final concentration of dNTPs is 200 μM of each deoxynucleotide in the 1X
+
Q5 High-
+
Fidelity Master Mix.
+
Q5 High-Fidelity DNA Polymerase cannot incorporate dUTP and is not
+
recommended for use with uracil-containing primers or templates.
+
5.
+
Q5
+
High-Fidelity DNA Polymerase concentration:
+
The concentration of
+
Q5 High-Fidelity DNA Polymerase in the
+
Q5 High-Fidelity 2X Master
+
Mix has been optimized for best results under a wide range of conditions.
+
6.
+
Denaturation:
+
An initial denaturation of 30 seconds at 98°C is sufficient for most amplicons from pure
+
DNA templates. Longer denaturation times can be used (up to 3 minutes) for templates that
+
require it.
+
During thermocycling, the denaturation step should be kept to a minimum. Typically, a 5–10
+
second denaturation at 98°C is recommended for most templates.
+
7.
+
Annealing:
+
Optimal annealing temperatures for
+
Q5 High-Fidelity DNA Polymerase tend to be higher
+
than for other PCR polymerases. The
+
NEB T
+
m
+
  Calculator
+
should be used to determine the
+
annealing temperature when using this enzyme. Typically use a 10–30 second annealing step
+
at 3°C above the T
+
m
+
of the lower T
+
m
+
primer. A temperature gradient can also be used to
+
optimize the annealing temperature for each primer pair.
+
For high T
+
m
+
primer pairs, two-step cycling without a separate annealing step can be used
+
(see note 10).
+
8.
+
Extension:
+
The recommended extension temperature is 72°C. Extension times are generally 20–30  
+
seconds per kb for complex, genomic samples, but can be reduced to 10 seconds per kb for
+
simple templates (plasmid,
+
E. coli
+
, etc.) or complex templates < 1 kb. Extension time can be
+
increased to 40 seconds per kb for cDNA or long, complex templates, if necessary.
+
A final extension of 2 minutes at 72°C is recommended.
+
9.
+
Cycle number:
+
Generally, 25–35 cycles yield sufficient product.
+
For genomic amplicons, 30-35 cycles are
+
recommended.
+
10.
+
2-step PCR:
+
When primers with annealing temperatures ≥
+
72°C are used, a 2-step thermocycling protocol
+
(combining annealing and extension into one step) is possible.
+
11.
+
Amplification of long products:
+
When amplifying products > 6 kb, it is often helpful to increase the extension time to 40–50
+
seconds/kb.
+
12.
+
PCR product:
+
The PCR products generated using
+
Q5 High-Fidelity
+
2X
+
Master Mix
+
have blunt ends. If
+
cloning is the next step, then blunt-end cloning is recommended. If T/A-cloning is preferred,
+
the DNA should be purified prior to A-addition, as
+
Q5 High-Fidelity DNA Polymerase will
+
degrade any overhangs generated.
+
Addition of an untemplated -dA can be done with
+
Taq
+
DNA Polymerase (
+
NEB #M0267
+
) or
+
Klenow exo
+
+
(
+
NEB #M0212
+
)
+
  
 +
 +
<br> <br>
 +
Please note that protocols with
 +
Q5 High-Fidelity DNA Polymerase may differ from protocols
 +
with other polymerases. Conditions recommended below should be used for optimal
 +
performance.<br><br>
 +
<hr size="10" noshade></hr>
 +
 +
<p style="font-size:12pt;"><sup>[1]</sup>
 +
https://www.neb.com/protocols/2012/12/07/protocol-for-q5-high-fidelity-2x-master-mix-m0492 (accessed 31 October 2017)</p>
 
</div></div>
 
</div></div>
  
Line 810: Line 968:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Restriction" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Restriction" />     
<div class="inner" style="display:none;"> Protocol is following! </div></div>
+
<div class="inner" style="display:none;">  
 +
<br>
 +
<b> 1. Aim </b><br><br>
 +
<div style="text-align: justify; margin-left:20px">
 +
A restriction digest is the division of DNA in a  specific area by the help of restriction enzymes. The aim afterwards could be to analyze and characterize (restriction maps) the DNA, to compare it to others or to clone it into e.g. a vector. Previous to the restriction, the DNA has to be isolated (see protocol miniprep).</div>
 +
<br>
 +
<b> 2. Test digest - What for?</b><br><br>
 +
<div style="text-align: justify; margin-left:20px">
 +
In a test digest the cleavage products are analyzed to verify that the used DNA has e.g. taken in a specific fragment. Only few of the DNA is digested, because the uncut DNA will be used in further steps. The whole DNA strand is often too long to analyze, therefore:</div><br>
 +
<ul style="text-align: justify; margin-left:40px;list-style-type:disc" float:right;>
 +
  <li>targeted cuts between specific base sequences </li>
 +
  <li>cleavage fragments small enough to run on gel </li>
 +
  <li>segregation and analysis by gel electrophoresis </li>
 +
</ul>
 +
<div style="text-align: justify; margin-left:20px">
 +
→ always with a control: uncut plasmid (see protocol gel electrophoresis)
 +
In a preparative digest normally 1 U enzyme digests 1 µg DNA in one hour. </div><br>
 +
 +
<b>3. Preparative digest - What for? </b><br><br>
 +
<div style="text-align: justify; margin-left:20px">
 +
In a preparative digest the entire available DNA is digested, because the cleavage products are used in further steps. The cut DNA can be extracted from a gel.
 +
It is important that as much DNA as possible is digested. Therefore 0,2 - 0,4 µl enzyme per µg DNA are applied and the reaction should run for ~2h.</div>
 +
<br>
 +
<b> 4. Procedure</b><br><br>
 +
<div style="text-align: justify; margin-left:20px">
 +
exemplary pipetting scheme:</div>
 +
<br>
 +
<table>
 +
  <tr>
 +
    <th  width="50%" align="center"><b>component</b></th>
 +
    <th  width="50%" align="center"><b>volume</b></th>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">DNA (typically 200 - 500 ng)</td>
 +
    <td align="center">1 µl </td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">10x buffer</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">H<sub>2</sub>O</td>
 +
    <td align="center">7,6 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center"> enzyme 1</td>
 +
    <td align="center">0,1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">enzyme 2</td>
 +
    <td align="center">0,1 µl </td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">final volume </td>
 +
    <td align="center">10 µl</td>
 +
  </tr>
 +
</table>
 +
<br>
 +
<br>
 +
<div style="text-align: justify; margin-left:20px">
 +
If more than one reaction is done, it is convenient to prepare a master mix containing everything except for the DNA (!). This saves time and tips and keeps you from having to pipet very small volumes (e.g. 0,1 µl).<br>
 +
 
 +
It is also possible to use more than two or just one restriction enzyme per reaction. They just need to have the same buffer preferences. Volumes have to be adjusted to the number of enzymes.</div>
 +
 
 +
<hr size="10" noshade></hr>
 +
 
 +
<p style="font-size:12pt;"><sup>[1]</sup> http://www.log2embl.de/sites/default/files/Labor-Protokoll-Restriktionsverdau.pdf (accessed 30 October 2017) </p>
 +
 
 +
<p style="font-size:12pt;"><sup>[2]</sup>
 +
https://www.uni-hohenheim.de/fileadmin/einrichtungen/pflanzenphysiologie/Protokolle/V.Klonierung/restriktionsverdau_de.pdf (accessed 30 October 2017)</p>
 +
 
 +
 
 +
<p style="font-size:12pt;"><sup>[3]</sup>
 +
http://www.biochemie.uni-jena.de/files/Praktikum/plasmid%20dna%20+%20restrictionsverdau.pdf (accessed 30 October 2017)</p>
 +
 
 +
 
 +
 
 +
</div></div>
  
  
Line 818: Line 1,053:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Salkowski Assey" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Salkowski Assay" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
+
<br> <br>
 
<b>1. Aim </b>
 
<b>1. Aim </b>
<br>
+
<br><br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Large qualitative screening of IAA-producing colonies at the same time to see if our constructs<div style="text-indent:60px;"> are still functional in our E.coli/yeasts <br>
+
1. Large qualitative screening of IAA-producing colonies at the same time to see if our constructs are still functional in our E.coli/yeasts. <br>
2. Helps us o pic the right colonies for colony-PCR and GC-MS measurements </div>
+
2. Helps us to pick the right colonies for colony-PCR and GC-MS measurements. </div>
 
<br>
 
<br>
<b>2. Safty </b>
+
<b>2. Safty </b><br> <br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Reagent: 2% 0.5M FeCl3 in 35% perchloric acid </div>
+
1. Reagent: 2 % 0.5M FeCl3 in 35 % perchloric acid </div>
 
<div style="text-align: justify; margin-left:60px">
 
<div style="text-align: justify; margin-left:60px">
1. Perchloric acid is highly corrosive and dangerous!!Always uses protective gear and work under a fume hood! <br>
+
1. Perchloric acid is highly corrosive and dangerous!! Always uses protective gear and work under a fume hood! <br>
  
2. Reagent will always be mixed together on the spot, FeCl3 stock solution is finished, acid will be taken from the chemicals sheld from the AG plant physiology (has been negotiated)</div>
+
2. Reagent will always be mixed together on the spot, FeCl<sub>3</sub> stock solution is finished, acid will be taken from the chemicals sheld from the AG plant physiology (has been negotiated).</div>
 
<br>
 
<br>
  
<b>3. What happens? </b>
+
<b>3. What happens? </b><br> <br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Reagent reacts to IAA (and other indolic compounds) to make several colored products <br>
+
1. Reagent reacts to IAA (and other indolic compounds) to make several colored products. <br>
  
2. IAA will be seen as bright red (other compounds brown or yellowish)</div>
+
2. IAA will be seen as bright red (other compounds brown or yellowish).</div>
 
<br>
 
<br>
<b>4. Assay conditions </b>  
+
<b>4. Assay conditions </b> <br> <br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Plates were inoculated in a grid pattern and overlaid with an 82 mm-diameter disk of Nitrocellulose membranes<br>
+
1. Plates were inoculated in a grid pattern and overlaid with an 82 mm-diameter disk of Nitrocellulose membranes.<br>
  
2. Plates are overlaid with Nitrocellulose immediately after inoculation with toothpicks
+
2. Plates are overlaid with Nitrocellulose immediately after inoculation with toothpicks.
After normal incubation (i.e. overnight) time, the membrane was removed and soaked in reagent (or reagent-saturated [2.5 mL] filter paper, here “Whatman grade 2” had best results), in glass chamber ( danger symbol and written information)<br>
+
After normal incubation (i.e. overnight) time, the membrane was removed and soaked in reagent (or reagent-saturated [2.5 mL] filter paper, here “Whatman grade 2” had best results), in glass chamber ( danger symbol and written information).<br>
  
3. After 30 - 60 minutes, coloring reaction is finished and fading began <br>
+
3. After 30 - 60 minutes, coloring reaction is finished and fading began. <br>
  
4. Best results with colony sizes between 0.5 to 2 mm <br>
+
4. Best results with colony sizes between 0.5 to 2 mm. <br>
  
5. Addition of Tryptophan greatly enhances color reaction but does not interfere with distinguishing IAA positive and negative colonies (yellow background and strong red to pink positives)<br>
+
5. Addition of Tryptophan greatly enhances color reaction but does not interfere with distinguishing IAA positive and negative colonies (yellow background and strong red to pink positives).<br>
  
6. Other indolic compounds (i.e. indolepyruvic acid) are distinguishable by a more yellow-brownish color </div>
+
6. Other indolic compounds (i.e. indolepyruvic acid) are distinguishable by a more yellow-brownish color. </div>
 
<br>
 
<br>
<b> 5. Afterwards </b>
+
<b> 5. Afterwards </b><br> <br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Neutralize the acid with NaOH and use a pH-test strip <br>
+
1. Neutralize the acid with NaOH and use a pH-test strip. <br>
  
2. Throw away liquid and solid waste separately </div>
+
2. Throw away liquid and solid waste separately. </div>
 
  <br><br>
 
  <br><br>
  
</div></div></div>
+
<hr size="10" noshade></hr>
 +
 
 +
<p style="font-size:12pt;"><sup>[1]</sup>Bric JM, Bostock RM, Silverstone SE. Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Applied and Environmental Microbiology. 1991;57(2):535-538. (accessed 31 October 2017)</p>
 +
 
 +
</div></div>
  
  
Line 870: Line 1,109:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="SLiCE" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="SLiCE" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
<b>SLiCE Reaction steps </b><br>
+
<b>1. Aim </b><br> <br>
 +
<div style="text-align: justify; margin-left:20px;">
 +
1. Cloning method that uses bacterial cell extracts. <br>
 +
2. Assembly  of  multiple  DNA  fragments  into  a  recombinant  DNA  molecule → in  a single  in  vitroreaction.<br>
 +
3. General principle: recombining short end homologies (15-52 bp.)<br>
 +
4. Homologous  ends  can  be  flanked  by  heterologous  sequences  (e.g.  for  inducing  a  linker sequence).</div><br> <br>
 +
<b>2. Steps </b><br><br>
 +
<div style="text-align: justify; margin-left:20px">
 
No steps have
 
No steps have
to be done at the clean bench, working at room temperature.
+
to be done at the clean bench, working at room temperature.</div>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
 
1. Prepare 10X SLiCE Buffer in a 1.5 mL tube : </div>
 
1. Prepare 10X SLiCE Buffer in a 1.5 mL tube : </div>
Line 888: Line 1,134:
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
 
2. Add the following ingredients into a 0.2 mL tube in this orde rand vortex: </div>
 
2. Add the following ingredients into a 0.2 mL tube in this orde rand vortex: </div>
<br>
 
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
linearized vector backbone (50 - 200 ng) <br>
 
linearized vector backbone (50 - 200 ng) <br>
Line 901: Line 1,146:
 
3. Incubate the SLiCE reaction mix as above at 37 °C for 1 hour using a PCR machine or water bath, and then place on ice. <br>
 
3. Incubate the SLiCE reaction mix as above at 37 °C for 1 hour using a PCR machine or water bath, and then place on ice. <br>
 
4. Transform 1 - 10 μL of the assembly reaction into 50 μL of competent<i> E. coli </i> and/or run a diagnostic agarose gel to check for successful assembly. <br>
 
4. Transform 1 - 10 μL of the assembly reaction into 50 μL of competent<i> E. coli </i> and/or run a diagnostic agarose gel to check for successful assembly. <br>
Transformation of E. coli safer, but takes more time <br>
+
Transformation of E. coli safer, but takes more time. <br>
 
5. For electroporation, transform 1 μL into 50 μL electrocompetent cells. For large recombinant DNA, electroporation is required. In complex cloning, electroporation is recommended, as it is 10-100 times as efficient as chemical transformation. <br>
 
5. For electroporation, transform 1 μL into 50 μL electrocompetent cells. For large recombinant DNA, electroporation is required. In complex cloning, electroporation is recommended, as it is 10-100 times as efficient as chemical transformation. <br>
electrocompetent cells have to be made, or we use heat shock (see protocol“transformationof <i>E. coli</i>”), protocol for electrocompetent cells can be taken from NEB</div>
+
Electrocompetent cells have to be made, or we use heat shock (see protocol“transformationof <i>E. coli</i>”), protocol for electrocompetent cells can be taken from NEB</div>
 +
<br> <br>
 +
<hr size="10" noshade></hr>
 +
 
 +
<p style="font-size:12pt;"><sup>[1]</sup>
 +
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672941/ (accessed 01 November 2017) </p>
 
</div></div>
 
</div></div>
  
Line 910: Line 1,160:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Transformation (E.Coli)" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Transformation (E.Coli)" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
  
<b>1. What is it?</b>
+
<b>1. What is it?</b><br><br>
 
<div style="text-align: justify;">  
 
<div style="text-align: justify;">  
 
Transmission of genetic information into competent cells (or plants, algas, mushrooms) (the target organismn)
 
Transmission of genetic information into competent cells (or plants, algas, mushrooms) (the target organismn)
</div>
+
</div><br>
 
+
<b>2. Steps</b><br><br>
<b>2. What you need</b>
+
 
<div style="text-align: justify; margin-left:20px">  
 
<div style="text-align: justify; margin-left:20px">  
1.5 mL tube, pipette (50µL), pipette(1000µL), plate <br>
+
1. Prechil 1.5 ml tube on ice. <br>
Ice, SOC Medium, competent cells </div>
+
2. Thaw a tube competent <i>E. coli </i> cells on ice for 10 minutes. </div>
<b>3. Steps</b>
+
<div style="text-align: justify; margin-left:20px">
+
1. Prechil 1.5 ml tube on ice <br>
+
 
+
2. Thaw a tube competent E. coli cells on ice for 10 minutes. </div>
+
 
<div style="text-align: justify; margin-left:40px">  
 
<div style="text-align: justify; margin-left:40px">  
1.  Mix gently <br>
+
1.  Mix gently. <br>
2. Pipette 50 µl of the cells  into the 1.5ml tube
+
2. Pipette 50 µl of the cells  into the 1.5 ml tube. </div>
 
+
    (Temperatures over 0°C decrease the efficiency of the transformation!)</div>
+
 
<div style="text-align: justify; margin-left:20px">  
 
<div style="text-align: justify; margin-left:20px">  
 
 
3. Add 1-5 µl (containing 1 pg-100 ng of plasmid) DNA to the cell mixture. <br>
 
3. Add 1-5 µl (containing 1 pg-100 ng of plasmid) DNA to the cell mixture. <br>
 
 
(as soon as as the last bit of ice in the tube is disappeared!)<br>
 
(as soon as as the last bit of ice in the tube is disappeared!)<br>
 
 
4. Flick the tube 4-5 times to mix cells and DNA. 
 
4. Flick the tube 4-5 times to mix cells and DNA. 
 
 
(No vortexing!)<br>
 
(No vortexing!)<br>
 
 
5. Place the mixture on ice for 30 minutes.
 
5. Place the mixture on ice for 30 minutes.
 
 
(without mixing!) <br>
 
(without mixing!) <br>
 
(2-fold loss in transformation efficiency for every 10 minutes this step is shortened!) 
 
(2-fold loss in transformation efficiency for every 10 minutes this step is shortened!) 
 
<br>
 
<br>
 
6. Heat shock at exactly 42°C for exactly 30 seconds.  
 
6. Heat shock at exactly 42°C for exactly 30 seconds.  
 
 
(without mixing!)<br>
 
(without mixing!)<br>
 
(temperature and timing specific to transformation volume and vessel)<br>
 
(temperature and timing specific to transformation volume and vessel)<br>
 
 
7. Place on ice for 5 minutes. <br>
 
7. Place on ice for 5 minutes. <br>
  
Line 959: Line 1,193:
 
8. Pipette 950 µl of room temperature SOC into the mixture. <br>
 
8. Pipette 950 µl of room temperature SOC into the mixture. <br>
  
9. Place at 37°C for 60 minutes and shake vigorously (800 rpm in thermo mix block)<br>
+
9. Place at 37°C for 60 minutes and shake vigorously (800 rpm in thermo mix block).<br>
  
 
(2-fold loss in transformation efficiency for every 15 minutes this step is shortened)<br>
 
(2-fold loss in transformation efficiency for every 15 minutes this step is shortened)<br>
Line 966: Line 1,200:
  
  
10. Warm selection plates to 37°C<br>
+
10. Warm selection plates to 37 °C.<br>
 
+
(plates can be used warm or cold, wet or dry…efficiency is nearly the same… warm plates are easier to spread and allow most rapid colony formation.)<br>
+
  
 
11. Mix the cells thoroughly by flicking the tube and inverting. <br>
 
11. Mix the cells thoroughly by flicking the tube and inverting. <br>
  
12. Spread 200 µl onto a selection plate and incubate overnight at 37°C. <br>
+
12. Spread 200 µl onto a selection plate and incubate overnight at 37 °C. <br>
  
13.For low efficiency cloning reactions: spin down the whole transformation mixture and remove the nearly complete supernatant (approx. 900 µl). Resuspend cells in remaining liquid and plate completely. </div>
+
13.For low efficiency cloning reactions: spin down the whole transformation mixture and remove the nearly complete supernatant (approx. 900 µl). Resuspend cells in remaining liquid and plate completely. </div><br><br>
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:12pt;"><sup>[1]</sup>https://www.neb.com/protocols/1/01/01/high-efficiency-transformation-protocol-c2987</p>
+
<p style="font-size:12pt;"><sup>[1]</sup>https://www.neb.com/protocols/1/01/01/high-efficiency-transformation-protocol-c2987 (accessed 01 November 2017)</p>
  
 
  </div></div>
 
  </div></div>
Line 986: Line 1,218:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Transformation (yeast)" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Transformation (yeast)" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
Line 1,009: Line 1,241:
  
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
<p style="font-size:12pt;"><sup>[1]</sup>
http://www.zymoresearch.com/downloads/dl/file/id/165/t2001i.pdf</p>
+
http://www.zymoresearch.com/downloads/dl/file/id/165/t2001i.pdf (accessed 01 November 2017)</p>
 
</div></div>
 
</div></div>
  
Line 1,016: Line 1,248:
  
  
<div class="spoiler">   
 
<input type="button"style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Ligation" />   
 
<div class="inner" style="display:none;">
 
<div align="justify">
 
<b>Ligation Protocol with T4 DNA Ligase (M0202)</b> <br> <br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Set up the following reaction in a microcentrifuge tube on ice.<br></div>
 
<style type="text/css">
 
.tg  {border-collapse:collapse;border-spacing:0;}
 
.tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
 
.tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
 
.tg .tg-yw4l{vertical-align:top}
 
</style>
 
<table class="tg">
 
  <tr>
 
    <th class="tg-yw4l"></th>
 
    <th class="tg-yw4l">volume</th>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">T4 DNA Ligase Buffer (10 x)</td>
 
    <td class="tg-yw4l"> 2 µl</td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">T4 DNA Ligase</td>
 
    <td class="tg-yw4l">1 µl</td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Vector DNA </td>
 
    <td class="tg-yw4l"></td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Insert DNA</td>
 
    <td class="tg-yw4l"></td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Nuclease-free water</td>
 
    <td class="tg-yw4l"> to 20 µl</td>
 
  </tr>
 
</table>
 
  
 
<div style="text-align: justify; margin-left:60px"> 
 
1. Calculation of the DNA
 
<br>
 
 
kb (smaller DNA)/ kb (larger DNA)&sdot;mass (Vector DNA)&sdot;relation (Insert DNA)
 
<br> <br>
 
Example calculation </div>
 
<div style="text-align: justify; margin-left:80px">
 
1:3 vector to insert <br>
 
mass Vector DNA: 100 ng <br>
 
Vector DNA: 10 kb <br>
 
Insert DNA: 3 kb<br>
 
3 kb/ 10 kb&sdot;100 ng&sdot;3 = 90 ng</div>
 
 
<div style="text-align: justify; margin-left:60px">
 
2. T4 DNA Ligase should be added last.<br>
 
3. Use nebiocalculator.neb.com/#!/ to calculate molar ratios. <br>
 
4. The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature. </div>
 
<div style="text-align: justify; margin-left:20px">
 
2. Gently mix the reaction by pipetting up and down and microfuge briefly.<br>
 
3.Incubation </div>
 
<div style="text-align: justify; margin-left:60px">
 
1. cohesive (sticky) ends </div>
 
<div style="text-align: justify; margin-left:80px"> 1. 16°C overnight or room temperature for 10 minutes. </div>
 
<div style="text-align: justify; margin-left:60px">
 
2. blunt ends or single base overhangs </div>
 
<div style="text-align: justify; margin-left:80px">
 
1. 16°C overnight or room temperature for 2 hours (alternatively, high concentration T4 DNA Ligase can be used in a 10 minute ligation). </div>
 
<div style="text-align: justify; margin-left:20px">
 
4.Heat inactivate at 65°C for 10 minutes. <br>
 
5. Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells</div>
 
<br> <br>
 
<hr size="10" noshade></hr>
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202</p>
 
</div></div></div></div>
 
 
 
 
 
 
<div class="spoiler">   
 
<input type="button"  style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Miniprep"/>   
 
<div class="inner" style="display:none;">
 
 
<b>Promega “Wizard Plus SV Miniprep Purification System“</b>
 
<br> <br>
 
<b>1.Production of cleared lysate</b>
 
<br><br>
 
<div style="text-indent:20px;">
 
1. Isolation of the bacteria </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.  harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)
 
of bacterial culture
 
<br>
 
2. centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge
 
<br>
 
3. pour off the supernatant
 
<br>
 
4. reinsert again bacterial culture to the pellet and repeat step 2 and 3
 
<br>
 
5. blot the inverted tube on a paper towel to remove excess media
 
<br> </div>
 
<div style="text-indent:20px;">
 
2.
 
Resuspension of the cells </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 250 μl of Cell Resuspension Solution
 
<br>
 
2.
 
completely resuspend the cell pellet by vortexing or pipetting
 
<br>
 
3.
 
it is essential to thoroughly resuspend the cells
 
<br></div>
 
<div style="text-indent:20px;">
 
3.
 
Lysing </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 250 μl of Cell Lysis Solution
 
<br>
 
2.
 
mix by inverting the tube 4 times - do not vortex
 
<br>
 
3.
 
incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes)
 
<br></div>
 
<div style="text-indent:20px;">
 
4.
 
Splitting proteins </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 10 μl of Alkaline Protease Solution
 
<br>
 
2.
 
mix by inverting the tube 4 times - do not vortex
 
<br>
 
3.
 
incubate for 5 minutes at room temperature
 
<br></div>
 
<div style="text-indent:20px;">
 
5.
 
Neutralization </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 350 μl of Neutralization Solution
 
<br>
 
2.
 
immediately mix by inverting the tube 4 times - do not vortex
 
<br></div>
 
<div style="text-indent:20px;">
 
6.
 
Isolation of the plasmids </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature
 
<br> <br>
 
<br></div>
 
<b>2. Isolation of the plasmid DNA </b>
 
<br><br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Transfer the cleared lysate (approximately 850 μl, Section 3.B, Step 6) to the
 
prepared Spin Column by decanting. Avoid disturbing or transferring any of the
 
white precipitate with the supernatant. </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. If the white precipitate is accidentally transferred to the Spin Column, pour
 
the Spin Column contents back into a sterile 1.5ml microcentrifuge tube
 
and centrifuge for another 5–10 minutes at maximum speed. Transfer the
 
resulting supernatant into the same Spin Column that was used initially for
 
this sample. The Spin Column can be reused but only for this sample.</div>
 
 
<div style="text-align: justify; margin-left:20px">
 
2. Centrifuge the supernatant at maximum speed in a microcentrifuge for 1 minute at
 
room temperature. Remove the Spin Column from the tube and discard the
 
flowthrough from the Collection Tube. Reinsert the Spin Column into the Collection
 
Tube. </div>
 
 
<div style="text-align: justify; margin-left:20px">
 
3. Wash the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 750 μl of Column Wash Solution.
 
<br>
 
2. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room
 
temperature.
 
<br>
 
3. Remove the Spin Column from the tube and discard the flowthrough.
 
<br>
 
4. Reinsert the Spin Column into the Collection Tube.
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
4. Wash again the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 250 μl of Column Wash Solution.
 
<br>
 
2. Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room
 
temperature.
 
<br>
 
3. If the Spin Column has Column Wash Solution associated with it,
 
centrifuge again for 1 minute at maximum speed.
 
<br>
 
4. Transfer the Spin Column to a new, sterile 1.5ml microcentrifuge tube, being
 
careful not to transfer any of the Column Wash Solution with the Spin Column.
 
<br></div>
 
<div style="text-indent:20px;">
 
5. Elute the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 50 μl of Nuclease-Free Water to the Spin Column, wait 5 minutes
 
<br>
 
2. Centrifuge at maximum speed for 1 minute at room temperature in a
 
microcentrifuge.
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
6. After eluting the DNA, remove the assembly from the 1.5ml microcentrifuge tube
 
and discard the Spin Column.</div>
 
<br>
 
<hr size="10" noshade></hr>
 
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/wizard-plus-sv-minipreps-dna-purification-system-protocol.pdf</p>
 
</div></div>
 
  
  

Latest revision as of 22:48, 1 November 2017

No Sidebar - Escape Velocity by HTML5 UP

Our research work

Research work


Finding a suitable topic was very challenging and time consuming. Initially, we looked through projects of prior teams and assembled a list of possible topics.

A big influence was a new method for assembling genes in a manufacturing manner which was being developed by a research group on our university. Based on the quick and easy synthesis of proteins a first idea was the creation of enzymes that could convert blood groups. Also working with cyanobacteria was an option we considered.

After many seminars, we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membraneless organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.

We thought about using either violacein or beta carotene as exemplary pathways for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in E. coli.

Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.

But all the planning was for nothing when we realized that some of the enzymes of the beta carotene pathway were localized in the membrane and therefore not suitable for our metabolic channeling approach.

After planning the design more precise we eventually arrived at our scaffold design of a low and a high-copy plasmid.

Protocols