Difference between revisions of "Team:Potsdam/Protocols"

 
(28 intermediate revisions by 4 users not shown)
Line 10: Line 10:
 
         <div id="main" class="container">
 
         <div id="main" class="container">
 
             <div id="content">
 
             <div id="content">
<p> We are describing our research work. Below you can find the protocols we used. </p>
+
<h1>Research work</h1>
 +
<p align="justify">
 +
<br>
 +
Finding a suitable topic was very challenging and time consuming. Initially, we looked through projects of prior teams and assembled a list of possible topics.
 +
<br>
 +
<br>
 +
A big influence was a new method for assembling genes in a manufacturing manner which was being developed by a research group on our university. Based on the quick and easy synthesis of proteins a first idea was the creation of enzymes that could convert blood groups. Also working with cyanobacteria was an option we considered.
 +
<br>
 +
<br>
 +
After many seminars, we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membraneless organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.
 +
<br>
 +
<br>
 +
We thought about using either violacein or beta carotene as exemplary pathways for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in <i>E. coli</i>. 
 +
<br>
 +
<br>
 +
<img src="https://static.igem.org/mediawiki/2017/8/85/T--Potsdam--home--enzyme.png" width="40%" style="float:right">
 +
Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.
 +
<br>
 +
<br>
 +
But all the planning was for nothing when we realized that some of the enzymes of the beta carotene pathway were localized in the membrane and therefore not suitable for our metabolic channeling approach.
 +
<br>
 +
<br>
 +
After planning the design more precise we eventually arrived at our scaffold design of a low and a high-copy plasmid.
 +
</p>
 +
 
  
  
Line 43: Line 67:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;"  onclick="showSpoiler(this);" value="3-A-Assembly" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;"  onclick="showSpoiler(this);" value="3-A-Assembly" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br>
 
<br>
 
<div>
 
<div>
<b> 1. Aim </b><br><br>
+
<b> 1. Preparation of starting plasmids </b>
<b> 2. Preparation of starting plasmids </b>
+
 
<br><br>
 
<br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
Line 116: Line 139:
 
<br>
 
<br>
 
<br>
 
<br>
<b>3. 3A-assembly</b>
+
<b>2. 3A-assembly</b>
 
<br> <br>
 
<br> <br>
 
<div style="text-indent:20px;">1. Good to know </div>
 
<div style="text-indent:20px;">1. Good to know </div>
Line 223: Line 246:
  
 
<p style="font-size:10pt;"><sup>[1]</sup>
 
<p style="font-size:10pt;"><sup>[1]</sup>
http://parts.igem.org/Help:Protocols/3A_Assembly</p>
+
http://parts.igem.org/Help:Protocols/3A_Assembly (accessed 31 October 2017)</p>
 
  </div></div></div>
 
  </div></div></div>
  
Line 230: Line 253:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Colony PCR" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Colony PCR" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
  
Line 389: Line 412:
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:15pt;"></sup><sup>[1]https://www.highqu.com/media/wysiwyg/ressources/manuals/PCM02_ALLin_Red_Taq_Mastermix_PI.pdf </p>
+
<p style="font-size:15pt;"></sup><sup>[1]https://www.highqu.com/media/wysiwyg/ressources/manuals/PCM02_ALLin_Red_Taq_Mastermix_PI.pdf (accessed 31 October 2017) </p>
  
 
</div></div></div>
 
</div></div></div>
Line 398: Line 421:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="DNA Purification" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="DNA Purification" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br><br>
 
<br><br>
 +
<b>1. Aim </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Purification of DNA
 +
after a gel electrophoresis</div><br> <br>
 +
<b> 2. Steps </b> <br> <br>
 
<p align="center"><b>1. Depending on the PCR product</b> <p>
 
<p align="center"><b>1. Depending on the PCR product</b> <p>
 
<table>
 
<table>
Line 452: Line 480:
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protcards/wizard-sv-gel-and-pcr-clean-up-system-quick-protocol.pdf?la=de-de</p>
+
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protcards/wizard-sv-gel-and-pcr-clean-up-system-quick-protocol.pdf?la=de-de (accessed 31 October 2017)</p>
 
</div></div></div>
 
</div></div></div>
  
Line 460: Line 488:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Gel electrohoresis" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Gel electrohoresis" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<div align="justify">
 
<div align="justify">
Line 556: Line 584:
 
DNA away from the agarose gel. For instructions on how to do this, visit the  
 
DNA away from the agarose gel. For instructions on how to do this, visit the  
 
Gel Purification  
 
Gel Purification  
page.<br></div><br> <br>
+
page.<br></div><br> <br><br>
 +
<hr size="10" noshade></hr>
 +
 
 +
<p style="font-size:15pt;"><sup>[1]
 +
http://www.addgene.org/protocols/gel-electrophoresis/ (accessed 31 October 2017)</p>
  
 
  </div></div></div>
 
  </div></div></div>
  
  
 +
<div class="spoiler">   
 +
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Ligation" />   
 +
<div class="inner" style="display:none;">
 +
<div align="justify">
 +
<br> <br>
 +
<b>1. Aim </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Enzymatically linkage of two DNA/RNA segments. <br><br>
 +
</div>
 +
<b> 2. Steps </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Set up the following reaction in a microcentrifuge tube on ice.<br></div><br> <br>
 +
<table>
 +
  <tr>
 +
    <th  width="50%" align="center"><b>component</b></th>
 +
    <th  width="50%" align="center"><b>volume</b></th>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">T4 DNA Ligase Buffer (10 x)</td>
 +
    <td align="center">2 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">10x buffer</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">T4 DNA Ligase</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center"> Vector DNA </td>
 +
    <td align="center"></td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">Insert DNA</td>
 +
    <td align="center"></td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">Nuclease-free water </td>
 +
    <td align="center"> to 20 µl</td>
 +
  </tr>
 +
</table>
  
 +
<div style="text-align: justify; margin-left:60px"> 
 +
1. Calculation of the DNA
 +
<br>
 +
 +
kb (smaller DNA)/ kb (larger DNA)&sdot;mass (Vector DNA)&sdot;relation (Insert DNA)
 +
<br> <br>
 +
Example calculation </div>
 +
<div style="text-align: justify; margin-left:80px">
 +
1:3 vector to insert <br>
 +
mass Vector DNA: 100 ng <br>
 +
Vector DNA: 10 kb <br>
 +
Insert DNA: 3 kb<br><br>
 +
3 kb/ 10 kb&sdot;100 ng&sdot;3 = 90 ng</div>
 +
 +
<div style="text-align: justify; margin-left:60px">
 +
2. T4 DNA Ligase should be added last.<br>
 +
3. Use nebiocalculator.neb.com/#!/ to calculate molar ratios. <br>
 +
4. The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature. </div>
 +
<div style="text-align: justify; margin-left:20px">
 +
2. Gently mix the reaction by pipetting up and down and microfuge briefly.<br>
 +
3. Incubation </div>
 +
<div style="text-align: justify; margin-left:60px">
 +
1. Cohesive (sticky) ends. </div>
 +
<div style="text-align: justify; margin-left:80px"> 1. 16 °C overnight or room temperature for 10 minutes. </div>
 +
<div style="text-align: justify; margin-left:60px">
 +
2. Blunt ends or single base overhangs. </div>
 +
<div style="text-align: justify; margin-left:80px">
 +
1. 16°C overnight or room temperature for 2 hours (alternatively, high concentration T4 DNA Ligase can be used in a 10 minute ligation). </div>
 +
<div style="text-align: justify; margin-left:20px">
 +
4.Heat inactivate at 65°C for 10 minutes. <br>
 +
5. Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells.</div>
 +
<br> <br>
 +
<hr size="10" noshade></hr>
 +
<p style="font-size:12pt;"><sup>[1]</sup>
 +
https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202 (accessed 31 October 2017)</p>
 +
</div></div></div></div>
 +
 +
 +
 +
 +
 +
<div class="spoiler">   
 +
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Miniprep"/>   
 +
<div class="inner" style="display:none;">
 +
 +
<br> <br>
 +
<b> 1. Aim </b><br> <br>
 +
<div style="text-indent:20px;">
 +
Isolation of DNA as a plasmid</div>
 +
<br> <br>
 +
<b>2.Production of cleared lysate</b>
 +
<br><br>
 +
<div style="text-indent:20px;">
 +
1. Isolation of the bacteria </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.  Harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)
 +
of bacterial culture .
 +
<br>
 +
2. Centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge.
 +
<br>
 +
3. Pour off the supernatant.
 +
<br>
 +
4. Reinsert again bacterial culture to the pellet and repeat step 2 and 3.
 +
<br>
 +
5. Blot the inverted tube on a paper towel to remove excess media.
 +
<br> </div>
 +
<div style="text-indent:20px;">
 +
2.
 +
Resuspension of the cells </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 250 μl of Cell Resuspension Solution.
 +
<br>
 +
2.
 +
Completely resuspend the cell pellet by vortexing or pipetting.
 +
<br>
 +
3.
 +
It is essential to thoroughly resuspend the cells.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
3.
 +
Lysing </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 250 μl of Cell Lysis Solution.
 +
<br>
 +
2.
 +
Mix by inverting the tube 4 times - do not vortex.
 +
<br>
 +
3.
 +
Incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes).
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
4.
 +
Splitting proteins </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 10 μl of Alkaline Protease Solution.
 +
<br>
 +
2.
 +
Mix by inverting the tube 4 times - do not vortex.
 +
<br>
 +
3.
 +
Incubate for 5 minutes at room temperature.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
5.
 +
Neutralization </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 350 μl of Neutralization Solution.
 +
<br>
 +
2.
 +
Immediately mix by inverting the tube 4 times - do not vortex.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
6.
 +
Isolation of the plasmids </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature.
 +
<br> <br>
 +
<br></div>
 +
<b>3. Isolation of the plasmid DNA </b>
 +
<br><br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Transfer the cleared lysate (approximately 850 μl, Section 3.B, Step 6) to the
 +
prepared Spin Column by decanting. Avoid disturbing or transferring any of the
 +
white precipitate with the supernatant. </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1. If the white precipitate is accidentally transferred to the Spin Column, pour
 +
the Spin Column contents back into a sterile 1.5ml microcentrifuge tube
 +
and centrifuge for another 5–10 minutes at maximum speed. Transfer the
 +
resulting supernatant into the same Spin Column that was used initially for
 +
this sample. The Spin Column can be reused but only for this sample.</div>
 +
 +
<div style="text-align: justify; margin-left:20px">
 +
2. Centrifuge the supernatant at maximum speed in a microcentrifuge for 1 minute at
 +
room temperature. Remove the Spin Column from the tube and discard the
 +
flowthrough from the Collection Tube. Reinsert the Spin Column into the Collection
 +
Tube. </div>
 +
 +
<div style="text-align: justify; margin-left:20px">
 +
3. Wash the plasmid DNA. </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 750 μl of Column Wash Solution.
 +
<br>
 +
2. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room
 +
temperature.
 +
<br>
 +
3. Remove the Spin Column from the tube and discard the flowthrough.
 +
<br>
 +
4. Reinsert the Spin Column into the Collection Tube.
 +
<br></div>
 +
<div style="text-align: justify; margin-left:20px">
 +
4. Wash again the plasmid DNA. </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 250 μl of Column Wash Solution.
 +
<br>
 +
2. Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room
 +
temperature.
 +
<br>
 +
3. If the Spin Column has Column Wash Solution associated with it,
 +
centrifuge again for 1 minute at maximum speed.
 +
<br>
 +
4. Transfer the Spin Column to a new, sterile 1.5ml microcentrifuge tube, being
 +
careful not to transfer any of the Column Wash Solution with the Spin Column.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
5. Elute the plasmid DNA </div>
 +
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 50 μl of Nuclease-Free Water to the Spin Column, wait 5 minutes
 +
<br>
 +
2. Centrifuge at maximum speed for 1 minute at room temperature in a
 +
microcentrifuge.
 +
<br></div>
 +
<div style="text-align: justify; margin-left:20px">
 +
6. After eluting the DNA, remove the assembly from the 1.5ml microcentrifuge tube
 +
and discard the Spin Column.</div>
 +
<br>
 +
<hr size="10" noshade></hr>
 +
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/wizard-plus-sv-minipreps-dna-purification-system-protocol.pdf (accessed 31 October 2017)</p>
 +
</div></div>
  
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="PCR" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="PCR" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
  
<b>1. What is the PCR ? </b><br>
+
<b>1. What is the PCR ? </b><br><br>
 
<b>p</b>olymerase <b>c</b>hain <b>r</b>eaction<br>
 
<b>p</b>olymerase <b>c</b>hain <b>r</b>eaction<br>
 
Method to make multiple copies of a  
 
Method to make multiple copies of a  
Line 575: Line 837:
  
  
<b>2. Reaction Setup</b>
+
<b>2. Reaction Setup</b><br><br>
<div style="text-align: justify; margin-left:20px">
+
<div style="text-align: justify; margin-left:40px">
1. Assemble all reaction components on ice, work on ice while assembling <br>
+
1. Assemble all reaction components on ice, work on ice while assembling. <br>
  
2. Preheat the thermocycler to the denaturation temperature (98 °C) <br>
+
2. Preheat the thermocycler to the denaturation temperature (98 °C). <br>
  
3. Prior to use all components should be mixed <br>
+
3. Prior to use all components should be mixed. <br>
  
4. Work quickly when transferring the reactions to a thermocycler </div><br><br>
+
4. Work quickly when transferring the reactions to a thermocycler. </div><br><br>
<b>3. Steps </b>
+
<b>3. Steps </b><br><br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
1. Assemble all components on ice for the reaction :<br><br>
 
1. Assemble all components on ice for the reaction :<br><br>
<style type="text/css">
+
<table>
.tg  {border-collapse:collapse;border-spacing:0;}
+
.tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
+
.tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
+
.tg .tg-yw4l{vertical-align:top}
+
</style>
+
<table class="tg">
+
 
   <tr>
 
   <tr>
 
     <th class="tg-yw4l" align="center"><b>Component</b></th>
 
     <th class="tg-yw4l" align="center"><b>Component</b></th>
Line 602: Line 858:
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l" align="center">Q5
+
     <td class="tg-yw4l" align="center"><b>Q5
High-Fidelity 2X Master Mix</td>
+
High-Fidelity 2X Master Mix</b></td>
 
     <td class="tg-yw4l" align="center">12.5 μl</td>
 
     <td class="tg-yw4l" align="center">12.5 μl</td>
 
     <td class="tg-yw4l" align="center">25 μl</td>
 
     <td class="tg-yw4l" align="center">25 μl</td>
Line 609: Line 865:
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
     <td class="tg-yw4l" align="center">10 μM Forward Primer</td>
+
     <td class="tg-yw4l" align="center"><b>10 μM Forward Primer</b></td>
 
     <td class="tg-yw4l" align="center">1.25 μl</td>
 
     <td class="tg-yw4l" align="center">1.25 μl</td>
 
     <td class="tg-yw4l" align="center">
 
     <td class="tg-yw4l" align="center">
Line 617: Line 873:
 
   <tr>
 
   <tr>
 
     <td class="tg-yw4l"align="center">
 
     <td class="tg-yw4l"align="center">
10 μM Reverse Primer</td>
+
<b>10 μM Reverse Primer</b></td>
 
     <td class="tg-yw4l"align="center">1.25 μl</td>
 
     <td class="tg-yw4l"align="center">1.25 μl</td>
 
     <td class="tg-yw4l"align="center">2.5 μl</td>
 
     <td class="tg-yw4l"align="center">2.5 μl</td>
Line 624: Line 880:
 
   <tr>
 
   <tr>
 
     <td class="tg-yw4l"align="center">
 
     <td class="tg-yw4l"align="center">
Template DNA</td>
+
<b>Template DNA</b></td>
 
     <td class="tg-yw4l"align="center">variable</td>
 
     <td class="tg-yw4l"align="center">variable</td>
 
     <td class="tg-yw4l"align="center">variable</td>
 
     <td class="tg-yw4l"align="center">variable</td>
Line 631: Line 887:
 
   <tr>
 
   <tr>
 
     <td class="tg-yw4l"align="center">
 
     <td class="tg-yw4l"align="center">
Nuclease-Free Water</td>
+
<b>Nuclease-Free Water</b></td>
 
     <td class="tg-yw4l"align="center">to 25 μl</td>
 
     <td class="tg-yw4l"align="center">to 25 μl</td>
 
     <td class="tg-yw4l"align="center">to 50 μl</td>
 
     <td class="tg-yw4l"align="center">to 50 μl</td>
Line 650: Line 906:
 
<b>4. Steps  
 
<b>4. Steps  
 
of
 
of
  PCR</b><br>
+
  PCR</b><br><br>
<div style="text-align: justify; margin-left:20px">
+
<div style="text-align: justify; margin-left:40px">
1.Denaturation : double- stranded template DNA is heated to separate it into two single stands <br>
+
1.Denaturation : double- stranded template DNA is heated to separate it into two single stands. <br>
2. Annealing    :  temperature is lowered to enable the DNA primers to attach to the template DNA <br>
+
2. Annealing    :  temperature is lowered to enable the DNA primers to attach to the template DNA. <br>
3. Extending    : temperature is raised and the new strand of DNA is made by the  polymerases <br>
+
3. Extending    : temperature is raised and the new strand of DNA is made by the  polymerases. <br>
 
Thermocycling Conditions for a Routine PCR: </div><br>
 
Thermocycling Conditions for a Routine PCR: </div><br>
 
<table>
 
<table>
 
     <tr>
 
     <tr>
 
       <th align="center"><b>Step</b></th>
 
       <th align="center"><b>Step</b></th>
       <th align="center"><b>Temp</b></th>
+
       <th align="center"><b>Temperature</b></th>
 
       <th align="center"><b>Time</b></th>
 
       <th align="center"><b>Time</b></th>
 
     </tr>
 
     </tr>
Line 703: Line 959:
  
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
<p style="font-size:12pt;"><sup>[1]</sup>
https://www.neb.com/protocols/2012/12/07/protocol-for-q5-high-fidelity-2x-master-mix-m0492</p>
+
https://www.neb.com/protocols/2012/12/07/protocol-for-q5-high-fidelity-2x-master-mix-m0492 (accessed 31 October 2017)</p>
 
</div></div>
 
</div></div>
  
Line 712: Line 968:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Restriction" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Restriction" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br>  
 
<br>  
<b> 1. Aim </b><br>
+
<b> 1. Aim </b><br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
A restriction digest is the division of DNA ina specific area by the help of restriction enzymes. The aim afterwards could be to analyze and characterize (restriction maps) the DNA, to compare it to others or to clone it into e.g. a vector. Previous to the restriction, the DNA has to be isolated (see protocol miniprep).</div>
+
A restriction digest is the division of DNA in a specific area by the help of restriction enzymes. The aim afterwards could be to analyze and characterize (restriction maps) the DNA, to compare it to others or to clone it into e.g. a vector. Previous to the restriction, the DNA has to be isolated (see protocol miniprep).</div>
 
<br>
 
<br>
<b> 2. Test digest - What for?</b><br>
+
<b> 2. Test digest - What for?</b><br><br>
<div style="text-align: justify; margin-left:20px"><br>
+
<div style="text-align: justify; margin-left:20px">
 
In a test digest the cleavage products are analyzed to verify that the used DNA has e.g. taken in a specific fragment. Only few of the DNA is digested, because the uncut DNA will be used in further steps. The whole DNA strand is often too long to analyze, therefore:</div><br>
 
In a test digest the cleavage products are analyzed to verify that the used DNA has e.g. taken in a specific fragment. Only few of the DNA is digested, because the uncut DNA will be used in further steps. The whole DNA strand is often too long to analyze, therefore:</div><br>
 
<ul style="text-align: justify; margin-left:40px;list-style-type:disc" float:right;>
 
<ul style="text-align: justify; margin-left:40px;list-style-type:disc" float:right;>
Line 731: Line 987:
 
In a preparative digest normally 1 U enzyme digests 1 µg DNA in one hour. </div><br>
 
In a preparative digest normally 1 U enzyme digests 1 µg DNA in one hour. </div><br>
 
 
<b>3. Preparative digest - What for? </b><br>
+
<b>3. Preparative digest - What for? </b><br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
 
In a preparative digest the entire available DNA is digested, because the cleavage products are used in further steps. The cut DNA can be extracted from a gel.  
 
In a preparative digest the entire available DNA is digested, because the cleavage products are used in further steps. The cut DNA can be extracted from a gel.  
 
It is important that as much DNA as possible is digested. Therefore 0,2 - 0,4 µl enzyme per µg DNA are applied and the reaction should run for ~2h.</div>
 
It is important that as much DNA as possible is digested. Therefore 0,2 - 0,4 µl enzyme per µg DNA are applied and the reaction should run for ~2h.</div>
 
<br>
 
<br>
<b> 4. Procedure</b><br>
+
<b> 4. Procedure</b><br><br>
<div style="text-align: justify">
+
<div style="text-align: justify; margin-left:20px">
 
exemplary pipetting scheme:</div>
 
exemplary pipetting scheme:</div>
<div style="text-align: justify;">
+
<br>
 
<table>
 
<table>
<div  style="text-align:left";
 
 
   <tr>
 
   <tr>
     <th align="center"><b>component</b></th>
+
     <th width="50%" align="center"><b>component</b></th>
     <th  align="center"><b>volume</b></th>
+
     <th  width="50%" align="center"><b>volume</b></th>
 
   </tr>
 
   </tr>
 
   <tr>
 
   <tr>
Line 770: Line 1,025:
 
     <td align="center">10 µl</td>
 
     <td align="center">10 µl</td>
 
   </tr>
 
   </tr>
</div>
 
 
</table>
 
</table>
 
<br>
 
<br>
 
</div>
 
 
<br>
 
<br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
Line 783: Line 1,035:
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:12pt;"><sup>[1]</sup> http://www.log2embl.de/sites/default/files/Labor-Protokoll-Restriktionsverdau.pdf </p>
+
<p style="font-size:12pt;"><sup>[1]</sup> http://www.log2embl.de/sites/default/files/Labor-Protokoll-Restriktionsverdau.pdf (accessed 30 October 2017) </p>
  
 
<p style="font-size:12pt;"><sup>[2]</sup>
 
<p style="font-size:12pt;"><sup>[2]</sup>
https://www.uni-hohenheim.de/fileadmin/einrichtungen/pflanzenphysiologie/Protokolle/V.Klonierung/restriktionsverdau_de.pdf </p>
+
https://www.uni-hohenheim.de/fileadmin/einrichtungen/pflanzenphysiologie/Protokolle/V.Klonierung/restriktionsverdau_de.pdf (accessed 30 October 2017)</p>
  
  
 
<p style="font-size:12pt;"><sup>[3]</sup>
 
<p style="font-size:12pt;"><sup>[3]</sup>
http://www.biochemie.uni-jena.de/files/Praktikum/plasmid%20dna%20+%20restrictionsverdau.pdf</p>
+
http://www.biochemie.uni-jena.de/files/Praktikum/plasmid%20dna%20+%20restrictionsverdau.pdf (accessed 30 October 2017)</p>
  
  
Line 801: Line 1,053:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Salkowski Assey" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Salkowski Assay" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
+
<br> <br>
 
<b>1. Aim </b>
 
<b>1. Aim </b>
<br>
+
<br><br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Large qualitative screening of IAA-producing colonies at the same time to see if our constructs<div style="text-indent:60px;"> are still functional in our E.coli/yeasts <br>
+
1. Large qualitative screening of IAA-producing colonies at the same time to see if our constructs are still functional in our E.coli/yeasts. <br>
2. Helps us o pic the right colonies for colony-PCR and GC-MS measurements </div>
+
2. Helps us to pick the right colonies for colony-PCR and GC-MS measurements. </div>
 
<br>
 
<br>
<b>2. Safty </b>
+
<b>2. Safty </b><br> <br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Reagent: 2% 0.5M FeCl3 in 35% perchloric acid </div>
+
1. Reagent: 2 % 0.5M FeCl3 in 35 % perchloric acid </div>
 
<div style="text-align: justify; margin-left:60px">
 
<div style="text-align: justify; margin-left:60px">
1. Perchloric acid is highly corrosive and dangerous!!Always uses protective gear and work under a fume hood! <br>
+
1. Perchloric acid is highly corrosive and dangerous!! Always uses protective gear and work under a fume hood! <br>
  
2. Reagent will always be mixed together on the spot, FeCl3 stock solution is finished, acid will be taken from the chemicals sheld from the AG plant physiology (has been negotiated)</div>
+
2. Reagent will always be mixed together on the spot, FeCl<sub>3</sub> stock solution is finished, acid will be taken from the chemicals sheld from the AG plant physiology (has been negotiated).</div>
 
<br>
 
<br>
  
<b>3. What happens? </b>
+
<b>3. What happens? </b><br> <br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Reagent reacts to IAA (and other indolic compounds) to make several colored products <br>
+
1. Reagent reacts to IAA (and other indolic compounds) to make several colored products. <br>
  
2. IAA will be seen as bright red (other compounds brown or yellowish)</div>
+
2. IAA will be seen as bright red (other compounds brown or yellowish).</div>
 
<br>
 
<br>
<b>4. Assay conditions </b>  
+
<b>4. Assay conditions </b> <br> <br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Plates were inoculated in a grid pattern and overlaid with an 82 mm-diameter disk of Nitrocellulose membranes<br>
+
1. Plates were inoculated in a grid pattern and overlaid with an 82 mm-diameter disk of Nitrocellulose membranes.<br>
  
2. Plates are overlaid with Nitrocellulose immediately after inoculation with toothpicks
+
2. Plates are overlaid with Nitrocellulose immediately after inoculation with toothpicks.
After normal incubation (i.e. overnight) time, the membrane was removed and soaked in reagent (or reagent-saturated [2.5 mL] filter paper, here “Whatman grade 2” had best results), in glass chamber ( danger symbol and written information)<br>
+
After normal incubation (i.e. overnight) time, the membrane was removed and soaked in reagent (or reagent-saturated [2.5 mL] filter paper, here “Whatman grade 2” had best results), in glass chamber ( danger symbol and written information).<br>
  
3. After 30 - 60 minutes, coloring reaction is finished and fading began <br>
+
3. After 30 - 60 minutes, coloring reaction is finished and fading began. <br>
  
4. Best results with colony sizes between 0.5 to 2 mm <br>
+
4. Best results with colony sizes between 0.5 to 2 mm. <br>
  
5. Addition of Tryptophan greatly enhances color reaction but does not interfere with distinguishing IAA positive and negative colonies (yellow background and strong red to pink positives)<br>
+
5. Addition of Tryptophan greatly enhances color reaction but does not interfere with distinguishing IAA positive and negative colonies (yellow background and strong red to pink positives).<br>
  
6. Other indolic compounds (i.e. indolepyruvic acid) are distinguishable by a more yellow-brownish color </div>
+
6. Other indolic compounds (i.e. indolepyruvic acid) are distinguishable by a more yellow-brownish color. </div>
 
<br>
 
<br>
<b> 5. Afterwards </b>
+
<b> 5. Afterwards </b><br> <br>
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
1. Neutralize the acid with NaOH and use a pH-test strip <br>
+
1. Neutralize the acid with NaOH and use a pH-test strip. <br>
  
2. Throw away liquid and solid waste separately </div>
+
2. Throw away liquid and solid waste separately. </div>
 
  <br><br>
 
  <br><br>
  
</div></div></div>
+
<hr size="10" noshade></hr>
 +
 
 +
<p style="font-size:12pt;"><sup>[1]</sup>Bric JM, Bostock RM, Silverstone SE. Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Applied and Environmental Microbiology. 1991;57(2):535-538. (accessed 31 October 2017)</p>
 +
 
 +
</div></div>
  
  
Line 853: Line 1,109:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="SLiCE" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="SLiCE" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
<b>SLiCE Reaction steps </b><br>
+
<b>1. Aim </b><br> <br>
 +
<div style="text-align: justify; margin-left:20px;">
 +
1. Cloning method that uses bacterial cell extracts. <br>
 +
2. Assembly  of  multiple  DNA  fragments  into  a  recombinant  DNA  molecule → in  a single  in  vitroreaction.<br>
 +
3. General principle: recombining short end homologies (15-52 bp.)<br>
 +
4. Homologous  ends  can  be  flanked  by  heterologous  sequences  (e.g.  for  inducing  a  linker sequence).</div><br> <br>
 +
<b>2. Steps </b><br><br>
 +
<div style="text-align: justify; margin-left:20px">
 
No steps have
 
No steps have
to be done at the clean bench, working at room temperature.
+
to be done at the clean bench, working at room temperature.</div>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
 
1. Prepare 10X SLiCE Buffer in a 1.5 mL tube : </div>
 
1. Prepare 10X SLiCE Buffer in a 1.5 mL tube : </div>
Line 871: Line 1,134:
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
 
2. Add the following ingredients into a 0.2 mL tube in this orde rand vortex: </div>
 
2. Add the following ingredients into a 0.2 mL tube in this orde rand vortex: </div>
<br>
 
 
<div style="text-align: justify; margin-left:40px">
 
<div style="text-align: justify; margin-left:40px">
 
linearized vector backbone (50 - 200 ng) <br>
 
linearized vector backbone (50 - 200 ng) <br>
Line 884: Line 1,146:
 
3. Incubate the SLiCE reaction mix as above at 37 °C for 1 hour using a PCR machine or water bath, and then place on ice. <br>
 
3. Incubate the SLiCE reaction mix as above at 37 °C for 1 hour using a PCR machine or water bath, and then place on ice. <br>
 
4. Transform 1 - 10 μL of the assembly reaction into 50 μL of competent<i> E. coli </i> and/or run a diagnostic agarose gel to check for successful assembly. <br>
 
4. Transform 1 - 10 μL of the assembly reaction into 50 μL of competent<i> E. coli </i> and/or run a diagnostic agarose gel to check for successful assembly. <br>
Transformation of E. coli safer, but takes more time <br>
+
Transformation of E. coli safer, but takes more time. <br>
 
5. For electroporation, transform 1 μL into 50 μL electrocompetent cells. For large recombinant DNA, electroporation is required. In complex cloning, electroporation is recommended, as it is 10-100 times as efficient as chemical transformation. <br>
 
5. For electroporation, transform 1 μL into 50 μL electrocompetent cells. For large recombinant DNA, electroporation is required. In complex cloning, electroporation is recommended, as it is 10-100 times as efficient as chemical transformation. <br>
electrocompetent cells have to be made, or we use heat shock (see protocol“transformationof <i>E. coli</i>”), protocol for electrocompetent cells can be taken from NEB</div>
+
Electrocompetent cells have to be made, or we use heat shock (see protocol“transformationof <i>E. coli</i>”), protocol for electrocompetent cells can be taken from NEB</div>
 +
<br> <br>
 +
<hr size="10" noshade></hr>
 +
 
 +
<p style="font-size:12pt;"><sup>[1]</sup>
 +
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672941/ (accessed 01 November 2017) </p>
 
</div></div>
 
</div></div>
  
Line 893: Line 1,160:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Transformation (E.Coli)" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Transformation (E.Coli)" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
  
<b>1. What is it?</b>
+
<b>1. What is it?</b><br><br>
 
<div style="text-align: justify;">  
 
<div style="text-align: justify;">  
 
Transmission of genetic information into competent cells (or plants, algas, mushrooms) (the target organismn)
 
Transmission of genetic information into competent cells (or plants, algas, mushrooms) (the target organismn)
</div>
+
</div><br>
 
+
<b>2. Steps</b><br><br>
<b>2. What you need</b>
+
 
<div style="text-align: justify; margin-left:20px">  
 
<div style="text-align: justify; margin-left:20px">  
1.5 mL tube, pipette (50µL), pipette(1000µL), plate <br>
+
1. Prechil 1.5 ml tube on ice. <br>
Ice, SOC Medium, competent cells </div>
+
2. Thaw a tube competent <i>E. coli </i> cells on ice for 10 minutes. </div>
<b>3. Steps</b>
+
<div style="text-align: justify; margin-left:20px">
+
1. Prechil 1.5 ml tube on ice <br>
+
 
+
2. Thaw a tube competent E. coli cells on ice for 10 minutes. </div>
+
 
<div style="text-align: justify; margin-left:40px">  
 
<div style="text-align: justify; margin-left:40px">  
1.  Mix gently <br>
+
1.  Mix gently. <br>
2. Pipette 50 µl of the cells  into the 1.5ml tube
+
2. Pipette 50 µl of the cells  into the 1.5 ml tube. </div>
 
+
    (Temperatures over 0°C decrease the efficiency of the transformation!)</div>
+
 
<div style="text-align: justify; margin-left:20px">  
 
<div style="text-align: justify; margin-left:20px">  
 
 
3. Add 1-5 µl (containing 1 pg-100 ng of plasmid) DNA to the cell mixture. <br>
 
3. Add 1-5 µl (containing 1 pg-100 ng of plasmid) DNA to the cell mixture. <br>
 
 
(as soon as as the last bit of ice in the tube is disappeared!)<br>
 
(as soon as as the last bit of ice in the tube is disappeared!)<br>
 
 
4. Flick the tube 4-5 times to mix cells and DNA. 
 
4. Flick the tube 4-5 times to mix cells and DNA. 
 
 
(No vortexing!)<br>
 
(No vortexing!)<br>
 
 
5. Place the mixture on ice for 30 minutes.
 
5. Place the mixture on ice for 30 minutes.
 
 
(without mixing!) <br>
 
(without mixing!) <br>
 
(2-fold loss in transformation efficiency for every 10 minutes this step is shortened!) 
 
(2-fold loss in transformation efficiency for every 10 minutes this step is shortened!) 
 
<br>
 
<br>
 
6. Heat shock at exactly 42°C for exactly 30 seconds.  
 
6. Heat shock at exactly 42°C for exactly 30 seconds.  
 
 
(without mixing!)<br>
 
(without mixing!)<br>
 
(temperature and timing specific to transformation volume and vessel)<br>
 
(temperature and timing specific to transformation volume and vessel)<br>
 
 
7. Place on ice for 5 minutes. <br>
 
7. Place on ice for 5 minutes. <br>
  
Line 942: Line 1,193:
 
8. Pipette 950 µl of room temperature SOC into the mixture. <br>
 
8. Pipette 950 µl of room temperature SOC into the mixture. <br>
  
9. Place at 37°C for 60 minutes and shake vigorously (800 rpm in thermo mix block)<br>
+
9. Place at 37°C for 60 minutes and shake vigorously (800 rpm in thermo mix block).<br>
  
 
(2-fold loss in transformation efficiency for every 15 minutes this step is shortened)<br>
 
(2-fold loss in transformation efficiency for every 15 minutes this step is shortened)<br>
Line 949: Line 1,200:
  
  
10. Warm selection plates to 37°C<br>
+
10. Warm selection plates to 37 °C.<br>
 
+
(plates can be used warm or cold, wet or dry…efficiency is nearly the same… warm plates are easier to spread and allow most rapid colony formation.)<br>
+
  
 
11. Mix the cells thoroughly by flicking the tube and inverting. <br>
 
11. Mix the cells thoroughly by flicking the tube and inverting. <br>
  
12. Spread 200 µl onto a selection plate and incubate overnight at 37°C. <br>
+
12. Spread 200 µl onto a selection plate and incubate overnight at 37 °C. <br>
  
13.For low efficiency cloning reactions: spin down the whole transformation mixture and remove the nearly complete supernatant (approx. 900 µl). Resuspend cells in remaining liquid and plate completely. </div>
+
13.For low efficiency cloning reactions: spin down the whole transformation mixture and remove the nearly complete supernatant (approx. 900 µl). Resuspend cells in remaining liquid and plate completely. </div><br><br>
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:12pt;"><sup>[1]</sup>https://www.neb.com/protocols/1/01/01/high-efficiency-transformation-protocol-c2987</p>
+
<p style="font-size:12pt;"><sup>[1]</sup>https://www.neb.com/protocols/1/01/01/high-efficiency-transformation-protocol-c2987 (accessed 01 November 2017)</p>
  
 
  </div></div>
 
  </div></div>
Line 969: Line 1,218:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Transformation (yeast)" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Transformation (yeast)" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
Line 992: Line 1,241:
  
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
<p style="font-size:12pt;"><sup>[1]</sup>
http://www.zymoresearch.com/downloads/dl/file/id/165/t2001i.pdf</p>
+
http://www.zymoresearch.com/downloads/dl/file/id/165/t2001i.pdf (accessed 01 November 2017)</p>
 
</div></div>
 
</div></div>
  
Line 999: Line 1,248:
  
  
<div class="spoiler">   
 
<input type="button"style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Ligation" />   
 
<div class="inner" style="display:none;">
 
<div align="justify">
 
<b>Ligation Protocol with T4 DNA Ligase (M0202)</b> <br> <br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Set up the following reaction in a microcentrifuge tube on ice.<br></div>
 
<style type="text/css">
 
.tg  {border-collapse:collapse;border-spacing:0;}
 
.tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
 
.tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
 
.tg .tg-yw4l{vertical-align:top}
 
</style>
 
<table class="tg">
 
  <tr>
 
    <th class="tg-yw4l"></th>
 
    <th class="tg-yw4l">volume</th>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">T4 DNA Ligase Buffer (10 x)</td>
 
    <td class="tg-yw4l"> 2 µl</td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">T4 DNA Ligase</td>
 
    <td class="tg-yw4l">1 µl</td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Vector DNA </td>
 
    <td class="tg-yw4l"></td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Insert DNA</td>
 
    <td class="tg-yw4l"></td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Nuclease-free water</td>
 
    <td class="tg-yw4l"> to 20 µl</td>
 
  </tr>
 
</table>
 
  
 
<div style="text-align: justify; margin-left:60px"> 
 
1. Calculation of the DNA
 
<br>
 
 
kb (smaller DNA)/ kb (larger DNA)&sdot;mass (Vector DNA)&sdot;relation (Insert DNA)
 
<br> <br>
 
Example calculation </div>
 
<div style="text-align: justify; margin-left:80px">
 
1:3 vector to insert <br>
 
mass Vector DNA: 100 ng <br>
 
Vector DNA: 10 kb <br>
 
Insert DNA: 3 kb<br>
 
3 kb/ 10 kb&sdot;100 ng&sdot;3 = 90 ng</div>
 
 
<div style="text-align: justify; margin-left:60px">
 
2. T4 DNA Ligase should be added last.<br>
 
3. Use nebiocalculator.neb.com/#!/ to calculate molar ratios. <br>
 
4. The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature. </div>
 
<div style="text-align: justify; margin-left:20px">
 
2. Gently mix the reaction by pipetting up and down and microfuge briefly.<br>
 
3.Incubation </div>
 
<div style="text-align: justify; margin-left:60px">
 
1. cohesive (sticky) ends </div>
 
<div style="text-align: justify; margin-left:80px"> 1. 16°C overnight or room temperature for 10 minutes. </div>
 
<div style="text-align: justify; margin-left:60px">
 
2. blunt ends or single base overhangs </div>
 
<div style="text-align: justify; margin-left:80px">
 
1. 16°C overnight or room temperature for 2 hours (alternatively, high concentration T4 DNA Ligase can be used in a 10 minute ligation). </div>
 
<div style="text-align: justify; margin-left:20px">
 
4.Heat inactivate at 65°C for 10 minutes. <br>
 
5. Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells</div>
 
<br> <br>
 
<hr size="10" noshade></hr>
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202</p>
 
</div></div></div></div>
 
 
 
 
 
 
<div class="spoiler">   
 
<input type="button"  style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Miniprep"/>   
 
<div class="inner" style="display:none;">
 
 
<b>Promega “Wizard Plus SV Miniprep Purification System“</b>
 
<br> <br>
 
<b>1.Production of cleared lysate</b>
 
<br><br>
 
<div style="text-indent:20px;">
 
1. Isolation of the bacteria </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.  harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)
 
of bacterial culture
 
<br>
 
2. centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge
 
<br>
 
3. pour off the supernatant
 
<br>
 
4. reinsert again bacterial culture to the pellet and repeat step 2 and 3
 
<br>
 
5. blot the inverted tube on a paper towel to remove excess media
 
<br> </div>
 
<div style="text-indent:20px;">
 
2.
 
Resuspension of the cells </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 250 μl of Cell Resuspension Solution
 
<br>
 
2.
 
completely resuspend the cell pellet by vortexing or pipetting
 
<br>
 
3.
 
it is essential to thoroughly resuspend the cells
 
<br></div>
 
<div style="text-indent:20px;">
 
3.
 
Lysing </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 250 μl of Cell Lysis Solution
 
<br>
 
2.
 
mix by inverting the tube 4 times - do not vortex
 
<br>
 
3.
 
incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes)
 
<br></div>
 
<div style="text-indent:20px;">
 
4.
 
Splitting proteins </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 10 μl of Alkaline Protease Solution
 
<br>
 
2.
 
mix by inverting the tube 4 times - do not vortex
 
<br>
 
3.
 
incubate for 5 minutes at room temperature
 
<br></div>
 
<div style="text-indent:20px;">
 
5.
 
Neutralization </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 350 μl of Neutralization Solution
 
<br>
 
2.
 
immediately mix by inverting the tube 4 times - do not vortex
 
<br></div>
 
<div style="text-indent:20px;">
 
6.
 
Isolation of the plasmids </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature
 
<br> <br>
 
<br></div>
 
<b>2. Isolation of the plasmid DNA </b>
 
<br><br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Transfer the cleared lysate (approximately 850 μl, Section 3.B, Step 6) to the
 
prepared Spin Column by decanting. Avoid disturbing or transferring any of the
 
white precipitate with the supernatant. </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. If the white precipitate is accidentally transferred to the Spin Column, pour
 
the Spin Column contents back into a sterile 1.5ml microcentrifuge tube
 
and centrifuge for another 5–10 minutes at maximum speed. Transfer the
 
resulting supernatant into the same Spin Column that was used initially for
 
this sample. The Spin Column can be reused but only for this sample.</div>
 
 
<div style="text-align: justify; margin-left:20px">
 
2. Centrifuge the supernatant at maximum speed in a microcentrifuge for 1 minute at
 
room temperature. Remove the Spin Column from the tube and discard the
 
flowthrough from the Collection Tube. Reinsert the Spin Column into the Collection
 
Tube. </div>
 
 
<div style="text-align: justify; margin-left:20px">
 
3. Wash the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 750 μl of Column Wash Solution.
 
<br>
 
2. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room
 
temperature.
 
<br>
 
3. Remove the Spin Column from the tube and discard the flowthrough.
 
<br>
 
4. Reinsert the Spin Column into the Collection Tube.
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
4. Wash again the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 250 μl of Column Wash Solution.
 
<br>
 
2. Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room
 
temperature.
 
<br>
 
3. If the Spin Column has Column Wash Solution associated with it,
 
centrifuge again for 1 minute at maximum speed.
 
<br>
 
4. Transfer the Spin Column to a new, sterile 1.5ml microcentrifuge tube, being
 
careful not to transfer any of the Column Wash Solution with the Spin Column.
 
<br></div>
 
<div style="text-indent:20px;">
 
5. Elute the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 50 μl of Nuclease-Free Water to the Spin Column, wait 5 minutes
 
<br>
 
2. Centrifuge at maximum speed for 1 minute at room temperature in a
 
microcentrifuge.
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
6. After eluting the DNA, remove the assembly from the 1.5ml microcentrifuge tube
 
and discard the Spin Column.</div>
 
<br>
 
<hr size="10" noshade></hr>
 
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/wizard-plus-sv-minipreps-dna-purification-system-protocol.pdf</p>
 
</div></div>
 
  
  

Latest revision as of 22:48, 1 November 2017

No Sidebar - Escape Velocity by HTML5 UP

Our research work

Research work


Finding a suitable topic was very challenging and time consuming. Initially, we looked through projects of prior teams and assembled a list of possible topics.

A big influence was a new method for assembling genes in a manufacturing manner which was being developed by a research group on our university. Based on the quick and easy synthesis of proteins a first idea was the creation of enzymes that could convert blood groups. Also working with cyanobacteria was an option we considered.

After many seminars, we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membraneless organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.

We thought about using either violacein or beta carotene as exemplary pathways for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in E. coli.

Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.

But all the planning was for nothing when we realized that some of the enzymes of the beta carotene pathway were localized in the membrane and therefore not suitable for our metabolic channeling approach.

After planning the design more precise we eventually arrived at our scaffold design of a low and a high-copy plasmid.

Protocols