Difference between revisions of "Team:Potsdam/Protocols"

 
(15 intermediate revisions by 4 users not shown)
Line 13: Line 13:
 
<p align="justify">
 
<p align="justify">
 
<br>
 
<br>
Finding a suitable topic was very challenging and time consuming. Initially we looked through projects of prior teams and a list of topic suggestion provided by iGEM.
+
Finding a suitable topic was very challenging and time consuming. Initially, we looked through projects of prior teams and assembled a list of possible topics.
 
<br>
 
<br>
 
<br>
 
<br>
Line 19: Line 19:
 
<br>
 
<br>
 
<br>
 
<br>
After many seminars we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membrane-less organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.
+
After many seminars, we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membraneless organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.
 
<br>
 
<br>
 
<br>
 
<br>
We thought about using either violacein or beta carotene as exemplary product for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in E. coli.   
+
We thought about using either violacein or beta carotene as exemplary pathways for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in <i>E. coli</i>.   
 
<br>
 
<br>
 
<br>
 
<br>
 +
<img src="https://static.igem.org/mediawiki/2017/8/85/T--Potsdam--home--enzyme.png" width="40%" style="float:right">
 
Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.
 
Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.
 
<br>
 
<br>
Line 66: Line 67:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;"  onclick="showSpoiler(this);" value="3-A-Assembly" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;"  onclick="showSpoiler(this);" value="3-A-Assembly" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br>
 
<br>
 
<div>
 
<div>
<b> 1. Aim </b><br><br>
+
<b> 1. Preparation of starting plasmids </b>
<b> 2. Preparation of starting plasmids </b>
+
 
<br><br>
 
<br><br>
 
<div style="text-align: justify; margin-left:20px">
 
<div style="text-align: justify; margin-left:20px">
Line 139: Line 139:
 
<br>
 
<br>
 
<br>
 
<br>
<b>3. 3A-assembly</b>
+
<b>2. 3A-assembly</b>
 
<br> <br>
 
<br> <br>
 
<div style="text-indent:20px;">1. Good to know </div>
 
<div style="text-indent:20px;">1. Good to know </div>
Line 246: Line 246:
  
 
<p style="font-size:10pt;"><sup>[1]</sup>
 
<p style="font-size:10pt;"><sup>[1]</sup>
http://parts.igem.org/Help:Protocols/3A_Assembly</p>
+
http://parts.igem.org/Help:Protocols/3A_Assembly (accessed 31 October 2017)</p>
 
  </div></div></div>
 
  </div></div></div>
  
Line 253: Line 253:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Colony PCR" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Colony PCR" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
  
Line 412: Line 412:
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:15pt;"></sup><sup>[1]https://www.highqu.com/media/wysiwyg/ressources/manuals/PCM02_ALLin_Red_Taq_Mastermix_PI.pdf </p>
+
<p style="font-size:15pt;"></sup><sup>[1]https://www.highqu.com/media/wysiwyg/ressources/manuals/PCM02_ALLin_Red_Taq_Mastermix_PI.pdf (accessed 31 October 2017) </p>
  
 
</div></div></div>
 
</div></div></div>
Line 421: Line 421:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="DNA Purification" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="DNA Purification" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br><br>
 
<br><br>
 +
<b>1. Aim </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Purification of DNA
 +
after a gel electrophoresis</div><br> <br>
 +
<b> 2. Steps </b> <br> <br>
 
<p align="center"><b>1. Depending on the PCR product</b> <p>
 
<p align="center"><b>1. Depending on the PCR product</b> <p>
 
<table>
 
<table>
Line 475: Line 480:
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protcards/wizard-sv-gel-and-pcr-clean-up-system-quick-protocol.pdf?la=de-de</p>
+
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protcards/wizard-sv-gel-and-pcr-clean-up-system-quick-protocol.pdf?la=de-de (accessed 31 October 2017)</p>
 
</div></div></div>
 
</div></div></div>
  
Line 483: Line 488:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Gel electrohoresis" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Gel electrohoresis" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<div align="justify">
 
<div align="justify">
Line 579: Line 584:
 
DNA away from the agarose gel. For instructions on how to do this, visit the  
 
DNA away from the agarose gel. For instructions on how to do this, visit the  
 
Gel Purification  
 
Gel Purification  
page.<br></div><br> <br>
+
page.<br></div><br> <br><br>
 +
<hr size="10" noshade></hr>
 +
 
 +
<p style="font-size:15pt;"><sup>[1]
 +
http://www.addgene.org/protocols/gel-electrophoresis/ (accessed 31 October 2017)</p>
  
 
  </div></div></div>
 
  </div></div></div>
 +
 +
 +
<div class="spoiler">   
 +
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Ligation" />   
 +
<div class="inner" style="display:none;">
 +
<div align="justify">
 +
<br> <br>
 +
<b>1. Aim </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Enzymatically linkage of two DNA/RNA segments. <br><br>
 +
</div>
 +
<b> 2. Steps </b> <br> <br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Set up the following reaction in a microcentrifuge tube on ice.<br></div><br> <br>
 +
<table>
 +
  <tr>
 +
    <th  width="50%" align="center"><b>component</b></th>
 +
    <th  width="50%" align="center"><b>volume</b></th>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">T4 DNA Ligase Buffer (10 x)</td>
 +
    <td align="center">2 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">10x buffer</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">T4 DNA Ligase</td>
 +
    <td align="center">1 µl</td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center"> Vector DNA </td>
 +
    <td align="center"></td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">Insert DNA</td>
 +
    <td align="center"></td>
 +
  </tr>
 +
  <tr>
 +
    <td align="center">Nuclease-free water </td>
 +
    <td align="center"> to 20 µl</td>
 +
  </tr>
 +
</table>
 +
 +
<div style="text-align: justify; margin-left:60px"> 
 +
1. Calculation of the DNA
 +
<br>
 +
 +
kb (smaller DNA)/ kb (larger DNA)&sdot;mass (Vector DNA)&sdot;relation (Insert DNA)
 +
<br> <br>
 +
Example calculation </div>
 +
<div style="text-align: justify; margin-left:80px">
 +
1:3 vector to insert <br>
 +
mass Vector DNA: 100 ng <br>
 +
Vector DNA: 10 kb <br>
 +
Insert DNA: 3 kb<br><br>
 +
3 kb/ 10 kb&sdot;100 ng&sdot;3 = 90 ng</div>
 +
 +
<div style="text-align: justify; margin-left:60px">
 +
2. T4 DNA Ligase should be added last.<br>
 +
3. Use nebiocalculator.neb.com/#!/ to calculate molar ratios. <br>
 +
4. The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature. </div>
 +
<div style="text-align: justify; margin-left:20px">
 +
2. Gently mix the reaction by pipetting up and down and microfuge briefly.<br>
 +
3. Incubation </div>
 +
<div style="text-align: justify; margin-left:60px">
 +
1. Cohesive (sticky) ends. </div>
 +
<div style="text-align: justify; margin-left:80px"> 1. 16 °C overnight or room temperature for 10 minutes. </div>
 +
<div style="text-align: justify; margin-left:60px">
 +
2. Blunt ends or single base overhangs. </div>
 +
<div style="text-align: justify; margin-left:80px">
 +
1. 16°C overnight or room temperature for 2 hours (alternatively, high concentration T4 DNA Ligase can be used in a 10 minute ligation). </div>
 +
<div style="text-align: justify; margin-left:20px">
 +
4.Heat inactivate at 65°C for 10 minutes. <br>
 +
5. Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells.</div>
 +
<br> <br>
 +
<hr size="10" noshade></hr>
 +
<p style="font-size:12pt;"><sup>[1]</sup>
 +
https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202 (accessed 31 October 2017)</p>
 +
</div></div></div></div>
  
  
Line 588: Line 678:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="PCR" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Miniprep"/>   
 +
<div class="inner" style="display:none;">
 +
 
 +
<br> <br>
 +
<b> 1. Aim </b><br> <br>
 +
<div style="text-indent:20px;">
 +
Isolation of DNA as a plasmid</div>
 +
<br> <br>
 +
<b>2.Production of cleared lysate</b>
 +
<br><br>
 +
<div style="text-indent:20px;">
 +
1. Isolation of the bacteria </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.  Harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)
 +
of bacterial culture .
 +
<br>
 +
2. Centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge.
 +
<br>
 +
3. Pour off the supernatant.
 +
<br>
 +
4. Reinsert again bacterial culture to the pellet and repeat step 2 and 3.
 +
<br>
 +
5. Blot the inverted tube on a paper towel to remove excess media.
 +
<br> </div>
 +
<div style="text-indent:20px;">
 +
2.
 +
Resuspension of the cells </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 250 μl of Cell Resuspension Solution.
 +
<br>
 +
2.
 +
Completely resuspend the cell pellet by vortexing or pipetting.
 +
<br>
 +
3.
 +
It is essential to thoroughly resuspend the cells.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
3.
 +
Lysing </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 250 μl of Cell Lysis Solution.
 +
<br>
 +
2.
 +
Mix by inverting the tube 4 times - do not vortex.
 +
<br>
 +
3.
 +
Incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes).
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
4.
 +
Splitting proteins </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 10 μl of Alkaline Protease Solution.
 +
<br>
 +
2.
 +
Mix by inverting the tube 4 times - do not vortex.
 +
<br>
 +
3.
 +
Incubate for 5 minutes at room temperature.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
5.
 +
Neutralization </div>
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Add 350 μl of Neutralization Solution.
 +
<br>
 +
2.
 +
Immediately mix by inverting the tube 4 times - do not vortex.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
6.
 +
Isolation of the plasmids </div>
 +
 
 +
<div style="text-align: justify; margin-left:40px">
 +
1.
 +
Centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature.
 +
<br> <br>
 +
<br></div>
 +
<b>3. Isolation of the plasmid DNA </b>
 +
<br><br>
 +
<div style="text-align: justify; margin-left:20px">
 +
1. Transfer the cleared lysate (approximately 850 μl, Section 3.B, Step 6) to the
 +
prepared Spin Column by decanting. Avoid disturbing or transferring any of the
 +
white precipitate with the supernatant. </div>
 +
 
 +
<div style="text-align: justify; margin-left:40px">
 +
1. If the white precipitate is accidentally transferred to the Spin Column, pour
 +
the Spin Column contents back into a sterile 1.5ml microcentrifuge tube
 +
and centrifuge for another 5–10 minutes at maximum speed. Transfer the
 +
resulting supernatant into the same Spin Column that was used initially for
 +
this sample. The Spin Column can be reused but only for this sample.</div>
 +
 
 +
<div style="text-align: justify; margin-left:20px">
 +
2. Centrifuge the supernatant at maximum speed in a microcentrifuge for 1 minute at
 +
room temperature. Remove the Spin Column from the tube and discard the
 +
flowthrough from the Collection Tube. Reinsert the Spin Column into the Collection
 +
Tube. </div>
 +
 
 +
<div style="text-align: justify; margin-left:20px">
 +
3. Wash the plasmid DNA. </div>
 +
 
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 750 μl of Column Wash Solution.
 +
<br>
 +
2. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room
 +
temperature.
 +
<br>
 +
3. Remove the Spin Column from the tube and discard the flowthrough.
 +
<br>
 +
4. Reinsert the Spin Column into the Collection Tube.
 +
<br></div>
 +
<div style="text-align: justify; margin-left:20px">
 +
4. Wash again the plasmid DNA. </div>
 +
 
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 250 μl of Column Wash Solution.
 +
<br>
 +
2. Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room
 +
temperature.
 +
<br>
 +
3. If the Spin Column has Column Wash Solution associated with it,
 +
centrifuge again for 1 minute at maximum speed.
 +
<br>
 +
4. Transfer the Spin Column to a new, sterile 1.5ml microcentrifuge tube, being
 +
careful not to transfer any of the Column Wash Solution with the Spin Column.
 +
<br></div>
 +
<div style="text-indent:20px;">
 +
5. Elute the plasmid DNA </div>
 +
 
 +
<div style="text-align: justify; margin-left:40px">
 +
1. Add 50 μl of Nuclease-Free Water to the Spin Column, wait 5 minutes
 +
<br>
 +
2. Centrifuge at maximum speed for 1 minute at room temperature in a
 +
microcentrifuge.
 +
<br></div>
 +
<div style="text-align: justify; margin-left:20px">
 +
6. After eluting the DNA, remove the assembly from the 1.5ml microcentrifuge tube
 +
and discard the Spin Column.</div>
 +
<br>
 +
<hr size="10" noshade></hr>
 +
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/wizard-plus-sv-minipreps-dna-purification-system-protocol.pdf (accessed 31 October 2017)</p>
 +
</div></div>
 +
 
 +
 
 +
<div class="spoiler">   
 +
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="PCR" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
Line 720: Line 959:
  
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
<p style="font-size:12pt;"><sup>[1]</sup>
https://www.neb.com/protocols/2012/12/07/protocol-for-q5-high-fidelity-2x-master-mix-m0492</p>
+
https://www.neb.com/protocols/2012/12/07/protocol-for-q5-high-fidelity-2x-master-mix-m0492 (accessed 31 October 2017)</p>
 
</div></div>
 
</div></div>
  
Line 729: Line 968:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Restriction" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Restriction" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br>  
 
<br>  
Line 796: Line 1,035:
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:12pt;"><sup>[1]</sup> http://www.log2embl.de/sites/default/files/Labor-Protokoll-Restriktionsverdau.pdf </p>
+
<p style="font-size:12pt;"><sup>[1]</sup> http://www.log2embl.de/sites/default/files/Labor-Protokoll-Restriktionsverdau.pdf (accessed 30 October 2017) </p>
  
 
<p style="font-size:12pt;"><sup>[2]</sup>
 
<p style="font-size:12pt;"><sup>[2]</sup>
https://www.uni-hohenheim.de/fileadmin/einrichtungen/pflanzenphysiologie/Protokolle/V.Klonierung/restriktionsverdau_de.pdf </p>
+
https://www.uni-hohenheim.de/fileadmin/einrichtungen/pflanzenphysiologie/Protokolle/V.Klonierung/restriktionsverdau_de.pdf (accessed 30 October 2017)</p>
  
  
 
<p style="font-size:12pt;"><sup>[3]</sup>
 
<p style="font-size:12pt;"><sup>[3]</sup>
http://www.biochemie.uni-jena.de/files/Praktikum/plasmid%20dna%20+%20restrictionsverdau.pdf</p>
+
http://www.biochemie.uni-jena.de/files/Praktikum/plasmid%20dna%20+%20restrictionsverdau.pdf (accessed 30 October 2017)</p>
  
  
Line 814: Line 1,053:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Salkowski Assey" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Salkowski Assay" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
Line 859: Line 1,098:
 
2. Throw away liquid and solid waste separately. </div>
 
2. Throw away liquid and solid waste separately. </div>
 
  <br><br>
 
  <br><br>
 +
 +
<hr size="10" noshade></hr>
 +
 +
<p style="font-size:12pt;"><sup>[1]</sup>Bric JM, Bostock RM, Silverstone SE. Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Applied and Environmental Microbiology. 1991;57(2):535-538. (accessed 31 October 2017)</p>
  
 
  </div></div>
 
  </div></div>
Line 866: Line 1,109:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="SLiCE" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="SLiCE" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
Line 910: Line 1,153:
  
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
<p style="font-size:12pt;"><sup>[1]</sup>
[doi:10.1007/978-1-62703-764-8_16] </p>
+
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672941/ (accessed 01 November 2017) </p>
 
</div></div>
 
</div></div>
  
Line 917: Line 1,160:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Transformation (E.Coli)" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Transformation (E.Coli)" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
  
<b>1. What is it?</b>
+
<b>1. What is it?</b><br><br>
 
<div style="text-align: justify;">  
 
<div style="text-align: justify;">  
 
Transmission of genetic information into competent cells (or plants, algas, mushrooms) (the target organismn)
 
Transmission of genetic information into competent cells (or plants, algas, mushrooms) (the target organismn)
</div>
+
</div><br>
 
+
<b>2. Steps</b><br><br>
<b>2. What you need</b>
+
 
<div style="text-align: justify; margin-left:20px">  
 
<div style="text-align: justify; margin-left:20px">  
1.5 mL tube, pipette (50µL), pipette(1000µL), plate <br>
+
1. Prechil 1.5 ml tube on ice. <br>
Ice, SOC Medium, competent cells </div>
+
2. Thaw a tube competent <i>E. coli </i> cells on ice for 10 minutes. </div>
<b>3. Steps</b>
+
<div style="text-align: justify; margin-left:20px">
+
1. Prechil 1.5 ml tube on ice <br>
+
 
+
2. Thaw a tube competent E. coli cells on ice for 10 minutes. </div>
+
 
<div style="text-align: justify; margin-left:40px">  
 
<div style="text-align: justify; margin-left:40px">  
1.  Mix gently <br>
+
1.  Mix gently. <br>
2. Pipette 50 µl of the cells  into the 1.5ml tube
+
2. Pipette 50 µl of the cells  into the 1.5 ml tube. </div>
 
+
    (Temperatures over 0°C decrease the efficiency of the transformation!)</div>
+
 
<div style="text-align: justify; margin-left:20px">  
 
<div style="text-align: justify; margin-left:20px">  
 
 
3. Add 1-5 µl (containing 1 pg-100 ng of plasmid) DNA to the cell mixture. <br>
 
3. Add 1-5 µl (containing 1 pg-100 ng of plasmid) DNA to the cell mixture. <br>
 
 
(as soon as as the last bit of ice in the tube is disappeared!)<br>
 
(as soon as as the last bit of ice in the tube is disappeared!)<br>
 
 
4. Flick the tube 4-5 times to mix cells and DNA. 
 
4. Flick the tube 4-5 times to mix cells and DNA. 
 
 
(No vortexing!)<br>
 
(No vortexing!)<br>
 
 
5. Place the mixture on ice for 30 minutes.
 
5. Place the mixture on ice for 30 minutes.
 
 
(without mixing!) <br>
 
(without mixing!) <br>
 
(2-fold loss in transformation efficiency for every 10 minutes this step is shortened!) 
 
(2-fold loss in transformation efficiency for every 10 minutes this step is shortened!) 
 
<br>
 
<br>
 
6. Heat shock at exactly 42°C for exactly 30 seconds.  
 
6. Heat shock at exactly 42°C for exactly 30 seconds.  
 
 
(without mixing!)<br>
 
(without mixing!)<br>
 
(temperature and timing specific to transformation volume and vessel)<br>
 
(temperature and timing specific to transformation volume and vessel)<br>
 
 
7. Place on ice for 5 minutes. <br>
 
7. Place on ice for 5 minutes. <br>
  
Line 966: Line 1,193:
 
8. Pipette 950 µl of room temperature SOC into the mixture. <br>
 
8. Pipette 950 µl of room temperature SOC into the mixture. <br>
  
9. Place at 37°C for 60 minutes and shake vigorously (800 rpm in thermo mix block)<br>
+
9. Place at 37°C for 60 minutes and shake vigorously (800 rpm in thermo mix block).<br>
  
 
(2-fold loss in transformation efficiency for every 15 minutes this step is shortened)<br>
 
(2-fold loss in transformation efficiency for every 15 minutes this step is shortened)<br>
Line 973: Line 1,200:
  
  
10. Warm selection plates to 37°C<br>
+
10. Warm selection plates to 37 °C.<br>
 
+
(plates can be used warm or cold, wet or dry…efficiency is nearly the same… warm plates are easier to spread and allow most rapid colony formation.)<br>
+
  
 
11. Mix the cells thoroughly by flicking the tube and inverting. <br>
 
11. Mix the cells thoroughly by flicking the tube and inverting. <br>
  
12. Spread 200 µl onto a selection plate and incubate overnight at 37°C. <br>
+
12. Spread 200 µl onto a selection plate and incubate overnight at 37 °C. <br>
  
13.For low efficiency cloning reactions: spin down the whole transformation mixture and remove the nearly complete supernatant (approx. 900 µl). Resuspend cells in remaining liquid and plate completely. </div>
+
13.For low efficiency cloning reactions: spin down the whole transformation mixture and remove the nearly complete supernatant (approx. 900 µl). Resuspend cells in remaining liquid and plate completely. </div><br><br>
 
<hr size="10" noshade></hr>
 
<hr size="10" noshade></hr>
  
<p style="font-size:12pt;"><sup>[1]</sup>https://www.neb.com/protocols/1/01/01/high-efficiency-transformation-protocol-c2987</p>
+
<p style="font-size:12pt;"><sup>[1]</sup>https://www.neb.com/protocols/1/01/01/high-efficiency-transformation-protocol-c2987 (accessed 01 November 2017)</p>
  
 
  </div></div>
 
  </div></div>
Line 993: Line 1,218:
  
 
<div class="spoiler">     
 
<div class="spoiler">     
<input type="button" style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Transformation (yeast)" />     
+
<input type="button" style="height: 50px; width: 50%; BACKGROUND-COLOR: rgb(61,67,80); font-size:25; color:white;" onclick="showSpoiler(this);" value="Transformation (yeast)" />     
 
<div class="inner" style="display:none;">  
 
<div class="inner" style="display:none;">  
 
<br> <br>
 
<br> <br>
Line 1,016: Line 1,241:
  
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
<p style="font-size:12pt;"><sup>[1]</sup>
http://www.zymoresearch.com/downloads/dl/file/id/165/t2001i.pdf</p>
+
http://www.zymoresearch.com/downloads/dl/file/id/165/t2001i.pdf (accessed 01 November 2017)</p>
 
</div></div>
 
</div></div>
  
Line 1,023: Line 1,248:
  
  
<div class="spoiler">   
 
<input type="button"style="height: 50px; width: 50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Ligation" />   
 
<div class="inner" style="display:none;">
 
<div align="justify">
 
<b>Ligation Protocol with T4 DNA Ligase (M0202)</b> <br> <br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Set up the following reaction in a microcentrifuge tube on ice.<br></div>
 
<style type="text/css">
 
.tg  {border-collapse:collapse;border-spacing:0;}
 
.tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
 
.tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;}
 
.tg .tg-yw4l{vertical-align:top}
 
</style>
 
<table class="tg">
 
  <tr>
 
    <th class="tg-yw4l"></th>
 
    <th class="tg-yw4l">volume</th>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">T4 DNA Ligase Buffer (10 x)</td>
 
    <td class="tg-yw4l"> 2 µl</td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">T4 DNA Ligase</td>
 
    <td class="tg-yw4l">1 µl</td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Vector DNA </td>
 
    <td class="tg-yw4l"></td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Insert DNA</td>
 
    <td class="tg-yw4l"></td>
 
  </tr>
 
  <tr>
 
    <td class="tg-yw4l">Nuclease-free water</td>
 
    <td class="tg-yw4l"> to 20 µl</td>
 
  </tr>
 
</table>
 
  
 
<div style="text-align: justify; margin-left:60px"> 
 
1. Calculation of the DNA
 
<br>
 
 
kb (smaller DNA)/ kb (larger DNA)&sdot;mass (Vector DNA)&sdot;relation (Insert DNA)
 
<br> <br>
 
Example calculation </div>
 
<div style="text-align: justify; margin-left:80px">
 
1:3 vector to insert <br>
 
mass Vector DNA: 100 ng <br>
 
Vector DNA: 10 kb <br>
 
Insert DNA: 3 kb<br>
 
3 kb/ 10 kb&sdot;100 ng&sdot;3 = 90 ng</div>
 
 
<div style="text-align: justify; margin-left:60px">
 
2. T4 DNA Ligase should be added last.<br>
 
3. Use nebiocalculator.neb.com/#!/ to calculate molar ratios. <br>
 
4. The T4 DNA Ligase Buffer should be thawed and resuspended at room temperature. </div>
 
<div style="text-align: justify; margin-left:20px">
 
2. Gently mix the reaction by pipetting up and down and microfuge briefly.<br>
 
3.Incubation </div>
 
<div style="text-align: justify; margin-left:60px">
 
1. cohesive (sticky) ends </div>
 
<div style="text-align: justify; margin-left:80px"> 1. 16°C overnight or room temperature for 10 minutes. </div>
 
<div style="text-align: justify; margin-left:60px">
 
2. blunt ends or single base overhangs </div>
 
<div style="text-align: justify; margin-left:80px">
 
1. 16°C overnight or room temperature for 2 hours (alternatively, high concentration T4 DNA Ligase can be used in a 10 minute ligation). </div>
 
<div style="text-align: justify; margin-left:20px">
 
4.Heat inactivate at 65°C for 10 minutes. <br>
 
5. Chill on ice and transform 1-5 μl of the reaction into 50 μl competent cells</div>
 
<br> <br>
 
<hr size="10" noshade></hr>
 
<p style="font-size:12pt;"><sup>[1]</sup>
 
https://www.neb.com/protocols/1/01/01/dna-ligation-with-t4-dna-ligase-m0202</p>
 
</div></div></div></div>
 
 
 
 
 
 
<div class="spoiler">   
 
<input type="button"  style="height:50px; width:50%; BACKGROUND-COLOR: #3399FF; font-size:25; color:black;" onclick="showSpoiler(this);" value="Miniprep"/>   
 
<div class="inner" style="display:none;">
 
 
<b>Promega “Wizard Plus SV Miniprep Purification System“</b>
 
<br> <br>
 
<b>1.Production of cleared lysate</b>
 
<br><br>
 
<div style="text-indent:20px;">
 
1. Isolation of the bacteria </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.  harvest 1–5 ml (high-copy-number plasmid) or 10 ml (low-copy-number plasmid)
 
of bacterial culture
 
<br>
 
2. centrifugation for 5 minutes at 10,000 xg in a tabletop centrifuge
 
<br>
 
3. pour off the supernatant
 
<br>
 
4. reinsert again bacterial culture to the pellet and repeat step 2 and 3
 
<br>
 
5. blot the inverted tube on a paper towel to remove excess media
 
<br> </div>
 
<div style="text-indent:20px;">
 
2.
 
Resuspension of the cells </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 250 μl of Cell Resuspension Solution
 
<br>
 
2.
 
completely resuspend the cell pellet by vortexing or pipetting
 
<br>
 
3.
 
it is essential to thoroughly resuspend the cells
 
<br></div>
 
<div style="text-indent:20px;">
 
3.
 
Lysing </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 250 μl of Cell Lysis Solution
 
<br>
 
2.
 
mix by inverting the tube 4 times - do not vortex
 
<br>
 
3.
 
incubate until the cell suspension clears (clear ≠ colorlessly) (approximately 1–5 minutes)
 
<br></div>
 
<div style="text-indent:20px;">
 
4.
 
Splitting proteins </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 10 μl of Alkaline Protease Solution
 
<br>
 
2.
 
mix by inverting the tube 4 times - do not vortex
 
<br>
 
3.
 
incubate for 5 minutes at room temperature
 
<br></div>
 
<div style="text-indent:20px;">
 
5.
 
Neutralization </div>
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
add 350 μl of Neutralization Solution
 
<br>
 
2.
 
immediately mix by inverting the tube 4 times - do not vortex
 
<br></div>
 
<div style="text-indent:20px;">
 
6.
 
Isolation of the plasmids </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1.
 
centrifuge the bacterial lysate at maximum speed (around 14,000 ×g) in a microcentrifuge for 10 minutes at room temperature
 
<br> <br>
 
<br></div>
 
<b>2. Isolation of the plasmid DNA </b>
 
<br><br>
 
<div style="text-align: justify; margin-left:20px">
 
1. Transfer the cleared lysate (approximately 850 μl, Section 3.B, Step 6) to the
 
prepared Spin Column by decanting. Avoid disturbing or transferring any of the
 
white precipitate with the supernatant. </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. If the white precipitate is accidentally transferred to the Spin Column, pour
 
the Spin Column contents back into a sterile 1.5ml microcentrifuge tube
 
and centrifuge for another 5–10 minutes at maximum speed. Transfer the
 
resulting supernatant into the same Spin Column that was used initially for
 
this sample. The Spin Column can be reused but only for this sample.</div>
 
 
<div style="text-align: justify; margin-left:20px">
 
2. Centrifuge the supernatant at maximum speed in a microcentrifuge for 1 minute at
 
room temperature. Remove the Spin Column from the tube and discard the
 
flowthrough from the Collection Tube. Reinsert the Spin Column into the Collection
 
Tube. </div>
 
 
<div style="text-align: justify; margin-left:20px">
 
3. Wash the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 750 μl of Column Wash Solution.
 
<br>
 
2. Centrifuge at maximum speed in a microcentrifuge for 1 minute at room
 
temperature.
 
<br>
 
3. Remove the Spin Column from the tube and discard the flowthrough.
 
<br>
 
4. Reinsert the Spin Column into the Collection Tube.
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
4. Wash again the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 250 μl of Column Wash Solution.
 
<br>
 
2. Centrifuge at maximum speed in a microcentrifuge for 2 minutes at room
 
temperature.
 
<br>
 
3. If the Spin Column has Column Wash Solution associated with it,
 
centrifuge again for 1 minute at maximum speed.
 
<br>
 
4. Transfer the Spin Column to a new, sterile 1.5ml microcentrifuge tube, being
 
careful not to transfer any of the Column Wash Solution with the Spin Column.
 
<br></div>
 
<div style="text-indent:20px;">
 
5. Elute the plasmid DNA </div>
 
 
<div style="text-align: justify; margin-left:40px">
 
1. Add 50 μl of Nuclease-Free Water to the Spin Column, wait 5 minutes
 
<br>
 
2. Centrifuge at maximum speed for 1 minute at room temperature in a
 
microcentrifuge.
 
<br></div>
 
<div style="text-align: justify; margin-left:20px">
 
6. After eluting the DNA, remove the assembly from the 1.5ml microcentrifuge tube
 
and discard the Spin Column.</div>
 
<br>
 
<hr size="10" noshade></hr>
 
<p style="font-size:12pt;"><sup>[1]</sup>https://www.promega.de/-/media/files/resources/protocols/technical-bulletins/0/wizard-plus-sv-minipreps-dna-purification-system-protocol.pdf</p>
 
</div></div>
 
  
  

Latest revision as of 22:48, 1 November 2017

No Sidebar - Escape Velocity by HTML5 UP

Our research work

Research work


Finding a suitable topic was very challenging and time consuming. Initially, we looked through projects of prior teams and assembled a list of possible topics.

A big influence was a new method for assembling genes in a manufacturing manner which was being developed by a research group on our university. Based on the quick and easy synthesis of proteins a first idea was the creation of enzymes that could convert blood groups. Also working with cyanobacteria was an option we considered.

After many seminars, we established the idea of metabolic channeling using dCas9 as our main project. One of our advisors also worked with membraneless organelles and suggested this approach for achieving metabolic channeling and therefor our secondary project with LLPS.

We thought about using either violacein or beta carotene as exemplary pathways for our increased production but finally decided for beta carotene. This brought many new challenges in the form of understanding the pathway and implementing it in E. coli.

Also, we very worried that an increased output would end up consuming too much precursor substrate and hinder growth of the transformed cells. Additionally, we found that team Edinburgh/Glasgow had problems with toxicity if the enzymes of the beta carotene pathway were in a specific order.

But all the planning was for nothing when we realized that some of the enzymes of the beta carotene pathway were localized in the membrane and therefore not suitable for our metabolic channeling approach.

After planning the design more precise we eventually arrived at our scaffold design of a low and a high-copy plasmid.

Protocols