Line 61: | Line 61: | ||
</p> | </p> | ||
<br><figure><center> | <br><figure><center> | ||
− | <img src="https://static.igem.org/mediawiki/2017/9/99/T--TU_Darmstadt--Chitin.png", alt="Structure of Chitin | + | <img src="https://static.igem.org/mediawiki/2017/9/99/T--TU_Darmstadt--Chitin.png", alt="Structure of Chitin", width=50%,> |
<figcaption> Fig. 1: Structure of Chitin </figcaption></center> | <figcaption> Fig. 1: Structure of Chitin </figcaption></center> | ||
</figure> | </figure> | ||
Line 70: | Line 70: | ||
<br>There are different kinds of CHS from several organisms. One interesting enzyme is NodC originating from the gram-negative bacterium <i>Rhizobium Leguminosarum</i> and is a homologue to the chitin synthase from yeast (Strucutre see Figure 2). <i>[Debelle et al., 1992]</i> | <br>There are different kinds of CHS from several organisms. One interesting enzyme is NodC originating from the gram-negative bacterium <i>Rhizobium Leguminosarum</i> and is a homologue to the chitin synthase from yeast (Strucutre see Figure 2). <i>[Debelle et al., 1992]</i> | ||
</p> | </p> | ||
− | <br><figure> | + | <br><figure> <center> |
− | <img src="https://static.igem.org/mediawiki/2017/5/57/T--TU_Darmstadt--StructureNodC.png", alt="Strucutre of NodC | + | <img src="https://static.igem.org/mediawiki/2017/5/57/T--TU_Darmstadt--StructureNodC.png", alt="Strucutre of NodC", width=50%> |
− | <figcaption> Fig. 2: Structure of NodC. </figcaption> | + | <figcaption> Fig. 2: Structure of NodC. Modeled from SwissModel </figcaption></center> |
</figure> | </figure> | ||
<p> | <p> | ||
<br><i>Rhizobium leguminosarum</i> bv <i>viciae</i>, where our enzyme originates from, is found to live in symbiosis with plants of the genera Pisum and Vicia of the family Fabaceae. <i>[Long, 1996]</i> <i>Rhizobium</i> species live in symbiosis with legumes, where the bacteria form nitrogen-fixing nodules in the legume roots. The symbiotic interaction leads to an activation of the bacterial nodulation (<i>nod</i>) genes and the secretion of Nod factors. These <i>nod</i> genes create and modify the Nod factors, to which NodC belongs. The Nod factors have a backbone consisting of β-1,4-<i>N</i>-acetylglucosamine oligosaccharides, most often tetra – or pentasaccharides with an acyl chain at C2 of the non-reducing end instead of an acetyl group. <i>[Barny et al., 1993; Debelle et al., 1993]</i> | <br><i>Rhizobium leguminosarum</i> bv <i>viciae</i>, where our enzyme originates from, is found to live in symbiosis with plants of the genera Pisum and Vicia of the family Fabaceae. <i>[Long, 1996]</i> <i>Rhizobium</i> species live in symbiosis with legumes, where the bacteria form nitrogen-fixing nodules in the legume roots. The symbiotic interaction leads to an activation of the bacterial nodulation (<i>nod</i>) genes and the secretion of Nod factors. These <i>nod</i> genes create and modify the Nod factors, to which NodC belongs. The Nod factors have a backbone consisting of β-1,4-<i>N</i>-acetylglucosamine oligosaccharides, most often tetra – or pentasaccharides with an acyl chain at C2 of the non-reducing end instead of an acetyl group. <i>[Barny et al., 1993; Debelle et al., 1993]</i> | ||
</p> | </p> | ||
− | <br><figure> | + | <br><figure><center> |
− | <img src="https://static.igem.org/mediawiki/2017/3/38/T--TU_Darmstadt--NodC-Transmembrandomains.gif", alt="Transmembrane Domains of NodC", align="middle", width= | + | <img src="https://static.igem.org/mediawiki/2017/3/38/T--TU_Darmstadt--NodC-Transmembrandomains.gif", alt="Transmembrane Domains of NodC", align="middle", width=50%> |
− | <figcaption> Fig. 3: Transmembran domains of NodC. Plotted with the TMHMM website. </figcaption> | + | <figcaption> Fig. 3: Transmembran domains of NodC. Plotted with the TMHMM website. </figcaption></center> |
</figure> | </figure> | ||
<p> | <p> | ||
Line 95: | Line 95: | ||
With a low concentration of UDP-GlcNAc NodC produces a mixture of trimers, tetramers and pentamers and with high concentrations of UDP-GlcNAc it produces pentamers solely. It almost exclusively directs the formation of pentasaccharides. <i>[Samain et al., 1997]</i> | With a low concentration of UDP-GlcNAc NodC produces a mixture of trimers, tetramers and pentamers and with high concentrations of UDP-GlcNAc it produces pentamers solely. It almost exclusively directs the formation of pentasaccharides. <i>[Samain et al., 1997]</i> | ||
</p> | </p> | ||
− | <figure><img src="https://static.igem.org/mediawiki/2017/e/e8/T--TU_Darmstadt--Mechanism-NodC.png", alt="Mechanism of NodC | + | <figure><center> |
− | <figcaption> Fig. 4: Mechanism of NodC. </figcaption> | + | <img src="https://static.igem.org/mediawiki/2017/e/e8/T--TU_Darmstadt--Mechanism-NodC.png", alt="Mechanism of NodC", width=398px, height=404px> |
+ | <figcaption> Fig. 4: Mechanism of NodC. </figcaption></center> | ||
</figure> | </figure> | ||
</div> | </div> |
Revision as of 13:08, 14 October 2017