Difference between revisions of "Team:Sydney Australia/Model"

Line 4: Line 4:
  
 
<head>
 
<head>
 
+
    <script type="text/javascript" src="http://www.hostmath.com/Math/MathJax.js?config=OK"></script>
  <script type="text/javascript" src="http://www.hostmath.com/Math/MathJax.js?config=OK"></script>
+
  
  
Line 239: Line 238:
 
   font-family: 'Quicksand', sans-serif;
 
   font-family: 'Quicksand', sans-serif;
 
}
 
}
.panel-body {
+
.cell-model {
 
font-family: 'Quicksand', sans-serif;
 
font-family: 'Quicksand', sans-serif;
height:90vh;
 
overflow:scroll;
 
  
 
}
 
}
* {font-family:'Quicksand';}
 
 
.experimental_modelling, .physiological_modelling, .economic_modelling {display:none;}
 
.experimental_modelling, .physiological_modelling, .economic_modelling {display:none;}
  

Revision as of 11:01, 26 October 2017



The aim of modelling in synthetic biology is to simulate the behaviour of your project to gain insight into how to best improve it. For our project, we saw three levels at which modelling could aid in the pursuit of its central aims.


As has been explored on our integrated human practices and applied design pages, the problem of insulin accessibility is complex and multi-faceted. As such, we decided it was not enough to consider our project as a problem whose solution could be found solely in a test tube. Distilled down, our project can be viewed as three sequential aims which we believe together can be used to address insulin accessibility.

Our modelling efforts were split into three branches, which reflected these major aspects of our project


Difficulties optimising production of recombinant are a key issue in the state of its accessibility.


in silico experiments to simulate how best to optimise expression led to theoretical insights which informed the direction of our efforts.

It is imperative to test the feasibility of our recombinant insulin as a therapeutic for diabetics.


Modelling the effects of changes to insulin’s biochemical makeup on its therapeutic effects supplement our wet-lab efforts to characterise our molecule

In addition, the project would be moot without a consideration of the insulin market as a whole.


Modelling helped us to gain insight into the global insulin market, which informed our approach towards entrepeneurship.

Experimental

Physiological

Economic

Whole Cell Model

The notation of Weisse et al has been adopted as follows:

Notation for biochemical species' considered in Weisse et al. model
Symbol Meaning
\[ \color{#3e3f3f}{ s_i}\] Internal Nutrient
\[\color{#3e3f3f}{a}\] energy, such as ATP
\[\color{#3e3f3f}{r}\] Ribosomes
\[\color{#3e3f3f}{e_t}\] A Transporter enzyme
\[\color{#3e3f3f}{e_m}\] A Metabolic Enzyme
\[\color{#3e3f3f}{q}\] House-keeping proteins
\[\color{#3e3f3f}{m_x \textrm{ with } x\in\{r,t,m,q\}}\] free mRNAs of the four species of proteins
\[\color{#3e3f3f}{c_p\textrm{ with } x\in\{r,t,m,q\}}\] ribosome-bound mRNA of the four species of proteins
Notation for rates in Weisse et al. model
Symbol Meaning
\[ \color{#3e3f3f}{ \upsilon_{imp}}\] Rate of nutrient import
\[\color{#3e3f3f}{\upsilon_{cat}}\] Rate of nutrient metabolism
\[\color{#3e3f3f}{\lambda}\] Growth Rate
\[\color{#3e3f3f}{n_x\textrm{ with } x\in\{r,t,m,q\}}\] length of proteins of different species
\[\color{#3e3f3f}{\upsilon_x \textrm{ with } x\in\{r,t,m,q\}}\] Rate of translating protein species'
\[\color{#3e3f3f}{k_b}\] mRNA ribosome binding rate
\[\color{#3e3f3f}{k_u}\] mRNA ribosome unbinding rate
\[\color{#3e3f3f}{\omega_x \textrm{ with } x\in\{r,t,m,q\}}\] Transcription rates of the four species of proteins
\[\color{#3e3f3f}{d_m}\] mRNA degradation rate
Notation for parameters in Weisse et al. model
Symbol Meaning
\[\color{#3e3f3f}{n_x\textrm{ with } x\in\{r,t,m,q\}}\] length of proteins of different species
\[\color{#3e3f3f}{d_m}\] ribosome-bound mRNA of the four species of proteins

Cytoplasmic Expression Model

Our first expression system was cytoplasmic expression in E. coli. We modelled the rate of change of five biochemical species in the cell:

Cytoplasmic Expression Model Variables
Symbol Meaning
\[\color{#3e3f3f}{m_p}\] free mRNA of recombinant protein
\[\color{#3e3f3f}{c_p}\] ribosome-bound mRNA of recombinant protein
\[\color{#3e3f3f}{p_u}\] Unfolded recombinant protein
\[\color{#3e3f3f}{p_f}\] Folded recombinant protein
\[\color{#3e3f3f}{p_a}\] recombinant protein aggregated in inclusion bodies

A diagram showing the species we modelled and notation used is shown below:

The following reactions were considered

List of reactions
Process Reaction Rate
Transcription \[\color{#3e3f3f}{\varnothing\rightarrow m_p}\] \[\color{#3e3f3f}{\omega_p(a)}\]
Dilution and degradation of mRNA \[\color{#3e3f3f}{m_p\rightarrow\varnothing}\] \[\color{#3e3f3f}{\lambda+d_m}\]
ribosome binding \[\color{#3e3f3f}{r+m_p\rightleftharpoons c_p}\] \[\color{#3e3f3f}{\textrm{forward: } k_b \textrm{, reverse: } k_u}\]
Dilution of ribosome-bound protein \[\color{#3e3f3f}{c_p\rightarrow\varnothing}\] \[\color{#3e3f3f}{\lambda}\]
Translation \[\color{#3e3f3f}{n_pa+c_p\rightarrow m_p+p_u+r}\] \[\color{#3e3f3f}{\upsilon_p(c_p,a)}\]
Aggregation \[\color{#3e3f3f}{p_u\rightarrow p_a}\] \[\color{#3e3f3f}{k_a}\]
Folding \[\color{#3e3f3f}{p_u\rightarrow p_f}\] \[\color{#3e3f3f}{k_f}\]
Dilution and degradation of folded protein \[\color{#3e3f3f}{p_f\rightarrow \varnothing} \] \[\color{#3e3f3f}{\lambda+k_d}\]

Here, \(\omega_p(a)\), the rate of transcription, is an energy dependent process.

We used the transcription rate form used in Weisse et al to denote the amount being transcribed (\(\omega_p(a)\)). That is,

\[\color{#3e3f3f}{\omega_p(a)=w_p \frac{a}{\theta_p+a} } \]

Where \(w_p\) is the maximal rate of transcription, dependent on the speed of transcriptional elongation, as well as the gene length, induction and copy number. \(a\) is the energy in the cell such as ATP (transcription is an energy dependent process), and \(\theta_p\) is the transcriptional threshold of the recombinant protein.



In addition, we used the form in Weisse et al. for the translation rate term

\[\color{#3e3f3f}{\upsilon_p(c_p,a)=c_p \frac{\gamma(a)}{n_p} } \]

Where \(n_p\) is the length of recombinant protein, and \(\gamma(a)\) is an expression for the rate of transcriptional elongation:

\[\color{#3e3f3f}{\gamma(a)=\frac{\gamma_{max} a}{K_{\gamma} + a} } \]

Where \(\gamma_{max}\) is the maximal rate of translation, \(K_{\gamma}\) is the translational elongation threshold, and \(a\) is the energy in the cell.

For the model of inclusion body aggregation, we assumed first order deposition of monomers of unfolded protein, dependent on the concentration of unfolded protein. as in Hoffmann et al (2001).


Using the law of mass action kinetics we can derive a set of ordinary differential equations from these reactions.

Summary of Cytoplasmic Expression Model

\[ \color{#3e3f3f}{\frac{d}{dt}{m}_p=\omega_p(a)+\upsilon_p(c_p,a)+k_uc_p-(\lambda +d_m)m_p-k_brm_p} \] \[ \color{#3e3f3f}{\frac{d}{dt}{c}_p=k_brm_p-\lambda c_p-k_uc_p-\upsilon_p(c_p,a)}\] \[ \color{#3e3f3f}{\frac{d}{dt}{p}_u=\upsilon_p(c_p,a)-(k_f+k_a+\lambda)p_u}\] \[ \color{#3e3f3f}{\frac{d}{dt}{p}_a=k_ap_u-\lambda p_a}\] \[ \color{#3e3f3f}{\frac{d}{dt}{p}_f=k_fp_u-(k_d+\lambda) p_f}\]

Parametrising the model

The following table shows the parameters we needed to find for our model, and the values we used

Cytoplasmic Expression Model Parameters. * Set to 0 as degradation is dominated by the rate of dilution due to cell division for stable proteins [3]
Symbol Meaning Default value Units Source
\[\color{#3e3f3f}{w_p}\] Maximal rate of transcription <10^3 mRNAs/min Proportional to induction level. Varied around realistic values as recommended by[1]
\[\color{#3e3f3f}{\theta_p}\] transcriptional threshold of the recombinant protein 4.38 [molecs/cell] [1]
\[\color{#3e3f3f}{n_p}\] Length of recombinant protein 312/255 [aa/molecs] Length of cytoplasmic proinsulin/winsulin gblock *link to design/parts page?*
\[\color{#3e3f3f}{\gamma_{max}}\] Maximal rate of translation 1260 [aa/ min molecs] [1]
\[\color{#3e3f3f}{K_{\gamma}}\] Translational elongation threshold 7 [molecs/ cell] [1]
\[\color{#3e3f3f}{k_u}\] Rate of unbinding of mRNA and ribosomes 1 [/min] [1]
\[\color{#3e3f3f}{k_b}\] Rate of binding of mRNA and ribosomes 1 [cell/ min molecs] [1]
\[\color{#3e3f3f}{d_m}\] degradation rate of mRNA 0.1 [/min] [1]
\[\color{#3e3f3f}{k_f}\] Rate of protein folding 0.14 [/min] adapted to fit units from [2]
\[\color{#3e3f3f}{k_a}\] Rate of protein aggregation 0.21 [/min] adapted to fit units from [2]
\[\color{#3e3f3f}{k_d}\] Rate of protein degradation 0 *

Periplasmic Expression Model

Next we looked at periplasmic expression of our recombinant protein in E. coli. We modelled the rate of change of 6 species

Cytoplasmic Expression Model Variables
Symbol Meaning
\[\color{#3e3f3f}{m_p}\] free mRNA of recombinant protein
\[\color{#3e3f3f}{c_p}\] ribosome-bound mRNA of recombinant protein
\[\color{#3e3f3f}{p_c}\] Unfolded recombinant protein in the cytoplasm
\[\color{#3e3f3f}{p_t}\] Unfolded recombinant protein bound to transporter
\[\color{#3e3f3f}{p_u}\] Unfolded recombinant protein in the periplasm
\[\color{#3e3f3f}{p_f}\] Folded recombinant protein in the periplasm

A diagram showing the species we modelled and notation used is shown below:

The following reactions were considered

List of reactions
Process Reaction Rate
Transcription \[\color{#3e3f3f}{\varnothing\rightarrow m_p}\] \[\color{#3e3f3f}{\omega_p(a)}\]
Dilution and degradation of mRNA \[\color{#3e3f3f}{m_p\rightarrow\varnothing}\] \[\color{#3e3f3f}{\lambda+d_m}\]
ribosome binding \[\color{#3e3f3f}{r+m_p\rightleftharpoons c_p}\] \[\color{#3e3f3f}{\textrm{forward: } k_b \textrm{, reverse: } k_u}\]
Dilution of ribosome-bound protein \[\color{#3e3f3f}{c_p\rightarrow\varnothing}\] \[\color{#3e3f3f}{\lambda}\]
Translation \[\color{#3e3f3f}{n_pa+c_p\rightarrow m_p+p_u+r}\] \[\color{#3e3f3f}{\upsilon_p(c_p,a)}\]
Translocator binding \[\color{#3e3f3f}{p_c+t\rightarrow p_t}\] \[\color{#3e3f3f}{k_bt}\]
Translocation \[\color{#3e3f3f}{p_t\rightarrow p_u}\] where \(t\) refers to the amount of translocons \[\color{#3e3f3f}{\tau(p_t,a)}\]
Folding \[\color{#3e3f3f}{p_u\rightarrow p_f}\] \[\color{#3e3f3f}{k_f}\]
Dilution and degradation of folded protein \[\color{#3e3f3f}{p_f\rightarrow \varnothing} \] \[\color{#3e3f3f}{\lambda+k_d}\]

here, \(\omega(a)\) and \(\upsilon(c_p,a)\) are as in the cytoplasmic reactions. The amount being transported is found with the term \(\tau_p(p_t,a)\). Protein translocation to the periplasm occurs via an ATP-dependent motor protein, secA [4]. Post-translational translocation uses ATP as a stepwisesource of energy to drive the protein through the membrane. It follows mechanism illustrated in Figure 1 [4].

Figure 1. A simplified mechanism of post-translational translocation. The secA-secYEG-protein \((p_c)\) complex binds ATP in a reversible reaction. The secA-bound ATP is hydrolysed, causing the secA to release itself from the protein-secYEG complex. SecA re-binds the protein-secYEG complex, displacing the polypeptide through the channel by ~25 amino acid residues. Binding of ATP to SecA then drives the peptide through another ~25 residues. The steps are repeated \(\frac{n_p}{50}\) times, where \(n_p\) is the length in amino acids of the protein. The polypeptide is then released into the periplasm.

Following the logic used to derive the translation rate in [1], we derive the net rate of translocating a protein \(p\) by defining \(K_p:=\frac{k_1k_2}{k_{-1}+k_2}\). This leads to

\[\color{#3e3f3f}{\tau_p(p_t,a)=p_t\Big(\frac{n_p}{50}\Big(\frac{1}{K_pa}+\frac{1}{k_2} \Big)+\frac{1}{k_t}\Big)^{-1}}\]

If we assume the final termination step is fast, so \(\frac{1}{k_t}<< \frac{n_p}{50}\Big(\frac{1}{K_pa}+\frac{1}{k_2} \Big) \), this is approximately equal to

\[\color{#3e3f3f}{\tau_p(p_t,a)\approx 50p_t \frac{\epsilon(a)}{n_p}\qquad \epsilon(a):=\frac{\epsilon_{max}a}{K_{\epsilon}+a} }\]

Where \(\epsilon_{max}\) is the maximal translocation rate, \(K_{\epsilon}\) is the threshold, and \(n_p\) is the length of the protein in amino acids


Parametrising Translocation

To find the parameters for translocation (\(\epsilon(a)\)) and (\(K_{\epsilon}\)), we used kinetic parameters determined in [5]. They measured translocation of a 346aa protein proOmpA and found the apparent Km of SecA was 50nM, and the threshold was 2.7 proOmpa/site/min. This converts to 2.7 \(\cdot\) 346 proOmpA/site/min aa/proOmpa \(\rightarrow\) 934.2 aa/molec/min

Using the law of mass action kinetics we can derive a set of ordinary differential equations from these reactions.

Summary of Periplasmic Expression Model

\[ \color{#3e3f3f}{\frac{d}{dt}{m}_p=\omega_p(a)+\upsilon_p(c_p,a)+k_uc_p-(\lambda +d_m)m_p-k_brm_p} \] \[ \color{#3e3f3f}{\frac{d}{dt}p=k_brm_p-\lambda c_p-k_uc_p-\upsilon_p(c_p,a)}\] \[ \color{#3e3f3f}{\frac{d}{dt}c=\upsilon_p(c_p,a)-(k_{bt}t+\lambda)p_c}\] \[\color{#3e3f3f}{\frac{d}{dt}t=k_{bt}tp_c-\tau_p(p_t,a)-\lambda p_t}\] \[\color{#3e3f3f}{\frac{d}{dt}u=\tau_p(p_t,a)-(k_f+\lambda) p_u}\] \[\color{#3e3f3f}{\frac{d}{dt}f=k_fp_u-(k_d+\lambda)p_f}\]

Parametrising the model

The following table shows the parameters we needed to find for our model, and the values we used

Periplasmic Expression Model Parameters. † Doubled relative to cytoplasmic folding rate to reflect the effect of an oxidising environment on disulfide bond formation. * Set to 0 as degradation is dominated by the rate of dilution due to cell division for stable proteins [3]
Symbol Meaning Default value Units Source
\[\color{#3e3f3f}{w_p}\] Maximal rate of transcription <10^3 mRNAs/min Proportional to induction level. Varied around realistic values as recommended by[1]
\[\color{#3e3f3f}{\theta_p}\] transcriptional threshold of the recombinant protein 4.38 [molecs/cell] [1]
\[\color{#3e3f3f}{n_p}\] Length of recombinant protein 312/255 [aa/molecs] Length of cytoplasmic proinsulin/winsulin gblock *link to design/parts page?*
\[\color{#3e3f3f}{\gamma_{max}}\] Maximal rate of translation 1260 [aa/ min molecs] [1]
\[\color{#3e3f3f}{K_{\gamma}}\] Translational elongation threshold 7 [molecs/ cell] [1]
\[\color{#3e3f3f}{k_u}\] Rate of unbinding of mRNA and ribosomes 1 [/min] [1]
\[\color{#3e3f3f}{k_b}\] Rate of binding of mRNA and ribosomes 1 [cell/ min molecs] [1]
\[\color{#3e3f3f}{d_m}\] degradation rate of mRNA 0.1 [/min] [1]
\[\color{#3e3f3f}{t}\] Number of translocons in a cell 500 [/cell] [5]
\[\color{#3e3f3f}{k_{bt}}\] Rate of protein binding to translocon 1 [cell /min molecs] [1]
\[\color{#3e3f3f}{\epsilon_{max}}\] Maximal translocation rate 934.2 [aa /min molecs] [5]
\[\color{#3e3f3f}{K_{\epsilon}}\] Translocational threshold [molecs/ cell] [5]
\[\color{#3e3f3f}{k_f}\] Rate of protein folding 0.28 [/min]
\[\color{#3e3f3f}{k_d}\] Rate of protein degradation 0 *
Periplasmic Expression Model Parameters. * Set to 0 as degradation is dominated by the rate of dilution due to cell division for stable proteins [3]
Symbol Meaning Default value Units Source
\[\color{#3e3f3f}{w_p}\] Maximal rate of transcription <10^3 mRNAs/min Proportional to induction level. Varied around realistic values as recommended by[1]
\[\color{#3e3f3f}{\theta_p}\] transcriptional threshold of the recombinant protein 4.38 [molecs/cell] [1]
\[\color{#3e3f3f}{n_p}\] Length of recombinant protein 312/255 [aa/molecs] Length of cytoplasmic proinsulin/winsulin gblock *link to design/parts page?*
\[\color{#3e3f3f}{\gamma_{max}}\] Maximal rate of translation 1260 [aa/ min molecs] [1]
\[\color{#3e3f3f}{K_{\gamma}}\] Translational elongation threshold 7 [molecs/ cell] [1]
\[\color{#3e3f3f}{k_u}\] Rate of unbinding of mRNA and ribosomes 1 [/min] [1]
\[\color{#3e3f3f}{k_b}\] Rate of binding of mRNA and ribosomes 1 [cell/ min molecs] [1]
\[\color{#3e3f3f}{d_m}\] degradation rate of mRNA 0.1 [/min] [1]
\[\color{#3e3f3f}{k_{bt}}\] Rate of protein binding to translocon [cell /min molecs]
\[\color{#3e3f3f}{\epsilon_{max}}\] Maximal translocation rate [aa /min molecs]
\[\color{#3e3f3f}{K_{\epsilon}}\] Translocational threshold [molecs/ cell]
\[\color{#3e3f3f}{k_f}\] Rate of protein folding 0.14 [/min] adapted to fit units from [2]
\[\color{#3e3f3f}{k_d}\] Rate of protein degradation 0 *

Bacillus Secretory Expression Model

We also developed a model of our secretory protein expression system in bacillus subtilis. The model included 6 species

Cytoplasmic Expression Model Variables
Symbol Meaning
\[\color{#3e3f3f}{m_p}\] free mRNA of recombinant protein
\[\color{#3e3f3f}{c_p}\] ribosome-bound mRNA of recombinant protein
\[\color{#3e3f3f}{p_c}\] Unfolded recombinant protein in the cytoplasm
\[\color{#3e3f3f}{p_t}\] Unfolded recombinant protein bound to transporter
\[\color{#3e3f3f}{p_u}\] Unfolded recombinant protein in the medium
\[\color{#3e3f3f}{p_f}\] Folded recombinant protein in the medium

A diagram showing the species we modelled and notation used is shown below:


Structurally, this is the same process as the periplasmic expression system, so the equations' structure is the same. However the parameters are different, reflecting the different environment of bacillus and medium and its effect on expression of recombinant protein

Summary of Bacillus Secretory Expression Model

\[ \color{#3e3f3f}{\frac{d}{dt}{m}_p=\omega_p(a)+\upsilon_p(c_p,a)+k_uc_p-(\lambda +d_m)m_p-k_brm_p} \] \[ \color{#3e3f3f}{\frac{d}{dt}{c}_p=k_brm_p-\lambda c_p-k_uc_p-\upsilon_p(c_p,a)}\] \[ \color{#3e3f3f}{\frac{d}{dt}{p}_c=\upsilon_p(c_p,a)-(k_{bt}t+\lambda)p_c}\] \[\color{#3e3f3f}{\frac{d}{dt}{p}_t=k_{bt}tp_c-\tau_p(p_t,a)-\lambda p_t}\] \[\color{#3e3f3f}{\frac{d}{dt}{p}_u=\tau_p(p_t,a)-(k_f+\lambda) p_u}\] \[\color{#3e3f3f}{\frac{d}{dt}{p}_f=k_fp_u-(k_d+\lambda)p_f}\] We were unfortunately unable to parametrise the bacillus model, so for our in silico experiments we focused on comparing cytoplasmic and periplasmic E. coli expression.

In Silico Experiments

Once we had modelled our different expression systems for recombinant insulin, we integrated them into the whole cell model developed in [1]. The methodology behind integrating models of our expression system into this model was to more accurately reflect reality. Recombinant protein expression occurs within a complex cellular environment with finite resources. A model which ignores the actiities of the host cells would ignore important host-circuit interactions. Ignoring the finite resources of the cell may skew our prediction of the yield of our expression systems.

We then interrogated these models for insights into how to optimise the expression of insulin

Comparing Cytoplasmic and Periplasmic Expression


References

For our physiological modelling, we used a model of subcutaneous insulin absorption developed in [1] and used it to develop a model relating the free energy of insulin hexamer formation and insulin dynamics (the time of peak of action, and the duration of action).

The authors of [1] developed a system of partial differential equations to describe the insulin infusion process. They modelled the change in three species:

Table 1. Variables in model of insulin infusion
Symbol Meaning
\[\color{#3e3f3f}{c_d}\] Insulin in dimeric form
\[\color{#3e3f3f}{c_h}\] Insulin in hexamer form
\[\color{#3e3f3f}{c_b}\] Insulin in bound form

They modelled the conversion between hexameric and dimeric insulin as follows

InsulinHexamer \(\color{#3e3f3f}{\rightleftharpoons}\) InsulinDimer

Where the forward rate was called \(\color{#3e3f3f}{P}\) and the reverse rate was \(\color{#3e3f3f}{PQ}\) where we can interpret \(\color{#3e3f3f}{P}\) as the production rate and \(\color{#3e3f3f}{Q}\) as the equilibrium constant.

The final model was as follows

\[\color{#3e3f3f}{\eqalignno{{\partial c_{d}(t,r)\over\partial t}=&\,P\left(c_{h}(t,r)-Qc_{d}(t,r)^{3}\right)-B_{d}c_{d}(t,r)\cr&+D\nabla^{2}c_{d}(t,r),\cr{\partial c_{h}(t,r)\over\partial t}=&\,-P\left(c_{h}(t,r)-Qc_{d}(t,r)^{3}\right)\cr&+D\nabla^{2}c_{h}(t,r)}}\]

Where \(\color{#3e3f3f}{P, Q, B_d, D}\) are parameters, and exogenous insulin flow is obtained by integrating the expression denoting the amount of insulin dimer entering the bloodstream: \[\color{#3e3f3f}{I_{ex}(t)=B_{d}\int\limits_{V_{sc}}c_{d}(t,r)dV.}\]

The parameters found for the different insulin analogues and their impact on insulin dynamics are

Table 2. Parameter Values and resultant Dynamics for different insulin analogues. Values of parameters from [1] Table IV. Insulin dynamics taken from [1] Fig. 6
Insulin Analogue \(\color{#3e3f3f}{Q}\) \(\color{#3e3f3f}{D}\) \(\color{#3e3f3f}{B_d}\) Time of peak Insulin action (hours) Duration of Insulin action (hours)
Lispro, Humalog, NovoRapid \[\color{#3e3f3f}{4.75\cdot 10^{-4}}\] \[\color{#3e3f3f}{3.36\cdot 10^{-4}}\] \[\color{#3e3f3f}{2.36\cdot 10^{-2}}\] \[\color{#3e3f3f}{0.25}\] \[\color{#3e3f3f}{4}\]
Actrapid \[\color{#3e3f3f}{1.9\cdot 10^{-3}}\] \[\color{#3e3f3f}{8.4\cdot 10^{-5}}\] \[\color{#3e3f3f}{1.18\cdot 10^{-2}}\] \[\color{#3e3f3f}{0.75}\] \[\color{#3e3f3f}{8}\]
Semilente \[\color{#3e3f3f}{7.6\cdot 10^{-2}}\] \[\color{#3e3f3f}{8.4\cdot 10^{-5}}\] \[\color{#3e3f3f}{1.18\cdot 10^{-2}}\] \[\color{#3e3f3f}{1.3}\] \[\color{#3e3f3f}{11}\]
NPH \[\color{#3e3f3f}{3.04}\] \[\color{#3e3f3f}{8.4\cdot 10^{-5}}\] \[\color{#3e3f3f}{1.18\cdot 10^{-2}}\] \[\color{#3e3f3f}{4.5}\] \[\color{#3e3f3f}{16}\]

Since the parameter \(\color{#3e3f3f}{Q}\) seemed to have the most impact on insulin dynamics, we tried to see if there was a relationship between the two (figure 1).

Figure 1. A semilog plot of the Time of peak insulin action (hours) and Duration of Insulin action (hours) after injection of 8IU insulin as a function of the parameter Q. Nonlinear regression analysis was performed using GraphPad PRISM 7. \(R^2\) values are shown on graph.

Now, since \(\color{#3e3f3f}{Q}\) in the model formed in [1] is the equilbrium constant of the reaction


InsulinHexamer \(\color{#3e3f3f}{\rightleftharpoons}\) InsulinDimer,

it is related to the Gibbs free energy of the reaction by the expression \(\color{#3e3f3f}{\Delta G^{o}=-RT\ln{Q}}\), where \(\color{#3e3f3f}{R=8.314472 J K^{-1} mol^{-1}}\) is the gas constant and \(T\) is the temperature in kelvins.

Therefore if we know the Gibbs free energy of insulin hexamer formation, we can use this to find some qualitative information on the dynamics of insulin absorption using the model from [1], and thus estimate the time of peak insulin action and the duration of insulin action from thermodynamic information.

We then wanted to see if we could estimate the dynamics our insulin analogue (winsulin) would have without experimental work, which we did not have time for. This would require a computational estimate of the \(\Delta G\) of hexamer formation for our analogue.

The Mutabind tool [2] was used to model the effects of our variations to proinsulin's sequence on protein-protein interactions within the insulin hexamer. We used PDB file 3AIY and inputted the sequence variants we had designed our winsulin with. Since the B chains are buried at the center of the insulin hexamer (see 3AIY), we analysed the effects of the mutations in this chain on hexamer stability

Figure 2. Alignment of winsulin and human insulin. Residues highlighted yellow were sequence variants inputted into the Mutabind program.

Mutabind predicted that all of our sequence changes would decrease the stability of the insulin hexamer for our analogue. Results are shown in table 3

Table 2. Mutabind results.
Mutation \(\color{#3e3f3f}{\Delta\Delta G_{bind} (kcal mol^{-1})}\)
\[\color{#3e3f3f}{H10D}\] \[\color{#3e3f3f}{0.51}\]
\[\color{#3e3f3f}{T27S}\] \[\color{#3e3f3f}{0.57}\]
\[\color{#3e3f3f}{K295}\] \[\color{#3e3f3f}{0.62}\]

Where \(\color{#3e3f3f}{\Delta\Delta G_{bind} (kcal mol^{-1})}\) is the predicted change in binding affinity induced by a mutation. A positive result corresponds to destabilising mutations, so the hexamer formation of winsulin will be less stable than that of human insulin.

This corresponds to a decrease in \(\color{#3e3f3f}{Q}\), meaning we predict our winsulin analogue will be relatively fast acting, compared to regular human insulin. Human insulin activity peaks in 2-4 hours and lasts for 6-8 hours [3] so this would make winsulin a rapid-acting analogue.

Although this is a crude estimate, it does give us some qualitative information on the action profile of our novel winsulin

References

  1. Tarin, C., Teufel, E., Pico, J., Bondia, J., Pfleiderer, H.J. (2005). Comprehensive pharmacokinetic model of insulin Glargine and other insulin formulations. IEEE Transactions on Biomedical Engineering, vol. 52, no. 12, pp. 1994-2005
  2. Li, M., Simonetti, F. L., Goncearenco, A., & Panchenko, A. R. (2016). MutaBind estimates and interprets the effects of sequence variants on protein–protein interactions. Nucleic Acids Research, 44(Web Server issue), W494–W501. http://doi.org/10.1093/nar/gkw374
  3. Diabetes Education Online. 2017. Types of Insulin. [ONLINE] Available at: https://dtc.ucsf.edu/types-of-diabetes/type2/treatment-of-type-2-diabetes/medications-and-therapies/type-2-insulin-rx/types-of-insulin/.