Line 292: | Line 292: | ||
<h4> Human Practices </h4> | <h4> Human Practices </h4> | ||
<article> | <article> | ||
− | During the last months we had a lot of interactions with the public trying to convey the aspects of our work and project. For example we worked with pupils at the GENIALE or our yearly pupil’s academy and organized a literature workshop about synthetic biology. We had appearances at the radio, created a little biotechnology quiz show for a student initiative and even wrote a biosafety report. All | + | During the last months we had a lot of interactions with the public trying to convey the aspects of our work and project. For example we worked with pupils at the GENIALE or our yearly pupil’s academy and organized a literature workshop about synthetic biology. We had appearances at the radio, created a little biotechnology quiz show for a student initiative and even wrote a biosafety report. All silver human practices are collected <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/HP/Silver">here</a>. |
</article> | </article> | ||
</div> | </div> |
Revision as of 15:07, 29 October 2017
Achievements
Establishment of two orthogonal methods for the detection of unnatural base pairs in a target sequence via Oxford Nanopore sequencing and an enzyme based detection method
Development of a software suite for these orthogonal methods
Integration and characterization of the nucleotide transporter PtNTT2 from P.tricornutum in E.coli for the uptake of unnatural nucleoside triphosphates
Proof that certain Taq-polymerases can efficiently incorporate unnatural nucleotides
Construction of a toolkit consisting of five aminoacyl-tRNA synthetases for incorporation of non-canonical amino acids
Development of a photoswitchable lycopene pathway
Design and chemical synthesis of a novel, fully synthetic amino acid based on cyanonitrobenzothiazol and asparagine and proof of its functionality
Modeling more than ten new aaRS sequences
Library development with several hundred thousand sequences for selecting aminoacyl-tRNA synthetases
Construction of positive and negative selection plasmids for the evolution of new synthetases for non-canonical amino acids
Improvement of an aminoacyl-tRNA synthetase test-system by introducing a FRET-system and development of a ranking system
Construction of an LED panel for irradiating 96-well microtiter plates, which can be used to manipulate non-canonical amino acids and much more
Development of an Android App to control the LED panel with your smartphone via Bluetooth
Writing of a biosafety report titled “Auxotrophy to Xeno-DNA: A Comprehensive Exploration of Combinatorial Mechanisms for a High-Fidelity Biosafety System”
Writing of the ChImp Report on the “Chances and Implications of an Expanded Genetic Code”