Difference between revisions of "Team:ITB Indonesia/Description"

(Prototype team page)
 
Line 1: Line 1:
 
{{ITB_Indonesia}}
 
{{ITB_Indonesia}}
 
<html>
 
<html>
 +
<div style="background-color:#7BBDA1;color:white;padding:20px;">
 +
Plastic pollution, especially in the ocean, has always been a very concerning environmental issue, both globally and regionally. PET (polyethylene glycol)-based plastics polluting our ocean are very difficult to degrade (takes 450-1000 for a single plastic bottle to be naturally degraded). Moreover, harsh ocean environment (waves and sunlight) cuts these plastics into very small fragments called microplastics, which size is only several milimeters in diameter. These microplastics make plastic pollution even more hazardous and harder to deal with. Microplastics are commonly unintentionally consumed by marine organisms causing poisoning which leads to deaths. And while normal sized plastics are easy for humans to collect and recycle, in microplastic form, these plastics are impossible to collect, making them an untreatable pollution.
 +
Realizing those facts, and seeing that treating plastic pollution is currently one of Indonesia’s main concerns, iGEM ITB 2017 team decides to step in and try to address this seemingly impossible-to-treat issue from synthetic biological perspective.
 +
The core of our project is to create a bacterial machine which will be able to 1.) detect the presence of microplastics, 2.) attach and colonize around the microplastics fragments, and 3.) degrades microplastics efficiently. Aside from that, our team plans to also ensure that our bacterial machine will also be able to 4.) utilize microplastics as its nutrition source, further enhancing its efficiency, 5.) grow and survive well in harsh marine environments, and 6.) prevent DNA leaks to nature.
  
 
 
<div class="column full_size">
 
<h1>Description</h1>
 
 
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
 
 
 
<h5>What should this page contain?</h5>
 
<ul>
 
<li> A clear and concise description of your project.</li>
 
<li>A detailed explanation of why your team chose to work on this particular project.</li>
 
<li>References and sources to document your research.</li>
 
<li>Use illustrations and other visual resources to explain your project.</li>
 
</ul>
 
 
 
</div>
 
 
<div class="column full_size" >
 
 
<h5>Advice on writing your Project Description</h5>
 
 
<p>
 
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.
 
</p>
 
 
<p>
 
Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.
 
</p>
 
 
</div>
 
 
 
<div class="column half_size" >
 
 
<h5>References</h5>
 
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
 
 
</div>
 
 
 
<div class="column half_size" >
 
<h5>Inspiration</h5>
 
<p>See how other teams have described and presented their projects: </p>
 
 
<ul>
 
<li><a href="https://2016.igem.org/Team:Imperial_College/Description">2016 Imperial College</a></li>
 
<li><a href="https://2016.igem.org/Team:Wageningen_UR/Description">2016 Wageningen UR</a></li>
 
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> 2014 UC Davis</a></li>
 
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">2014 SYSU Software</a></li>
 
</ul>
 
</div>
 
  
  
  
 
</html>
 
</html>

Revision as of 16:49, 27 June 2017

Plastic pollution, especially in the ocean, has always been a very concerning environmental issue, both globally and regionally. PET (polyethylene glycol)-based plastics polluting our ocean are very difficult to degrade (takes 450-1000 for a single plastic bottle to be naturally degraded). Moreover, harsh ocean environment (waves and sunlight) cuts these plastics into very small fragments called microplastics, which size is only several milimeters in diameter. These microplastics make plastic pollution even more hazardous and harder to deal with. Microplastics are commonly unintentionally consumed by marine organisms causing poisoning which leads to deaths. And while normal sized plastics are easy for humans to collect and recycle, in microplastic form, these plastics are impossible to collect, making them an untreatable pollution. Realizing those facts, and seeing that treating plastic pollution is currently one of Indonesia’s main concerns, iGEM ITB 2017 team decides to step in and try to address this seemingly impossible-to-treat issue from synthetic biological perspective. The core of our project is to create a bacterial machine which will be able to 1.) detect the presence of microplastics, 2.) attach and colonize around the microplastics fragments, and 3.) degrades microplastics efficiently. Aside from that, our team plans to also ensure that our bacterial machine will also be able to 4.) utilize microplastics as its nutrition source, further enhancing its efficiency, 5.) grow and survive well in harsh marine environments, and 6.) prevent DNA leaks to nature.