Difference between revisions of "Team:BostonU HW/PCR"

Line 69: Line 69:
 
<img src="https://static.igem.org/mediawiki/2017/8/85/MARS_PCR.png" id="TITLE">
 
<img src="https://static.igem.org/mediawiki/2017/8/85/MARS_PCR.png" id="TITLE">
 
</div>
 
</div>
<div class="main main-raised" style="margin-bottom:5%;">
+
<div class="main main-raised">
 
<div class="container">
 
<div class="container">
 
<div class="col-md-9">
 
<div class="col-md-9">
Line 89: Line 89:
 
<div class="text">
 
<div class="text">
 
This microfluidic chip is designed to perform PCR. A solution containing the required substrates for PCR is flowed into the chip and through a mixer, on top of chip a heating element will be placed. The valves at both ends of the mixer are closed, isolating the mixture, and then the heating element performs temperature cycling. The liquid is then pushed out into an output receptacle for future use in the lab.
 
This microfluidic chip is designed to perform PCR. A solution containing the required substrates for PCR is flowed into the chip and through a mixer, on top of chip a heating element will be placed. The valves at both ends of the mixer are closed, isolating the mixture, and then the heating element performs temperature cycling. The liquid is then pushed out into an output receptacle for future use in the lab.
                                 <br><br>  
+
                                 <br><br>
This chip has been milled and tested, but not deemed fully fluid functional as of this time. For a more complete understanding of the chip, click the download button in order to access its CNC millable SVG files, JSON file, full device documentation and PNG files of its flow and control layers.  
+
This chip has been milled and tested, but not deemed fully fluid functional as of this time. For a more complete understanding of the chip, click the download button in order to access its CNC millable SVG files, JSON file, full device documentation and PNG files of its flow and control layers.
  
 
</div>
 
</div>
Line 151: Line 151:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
<!-- THIS IS FOOTER -->
 +
<div class="wrapper" style="background:#1c1f1f; margin-top:0px;margin-right:0px !important; margin-left:0px !important;" id="Footer">
 +
<div class="container" style="text-align:center !important">
 +
 +
<div class="col-md-2" style="color:white; margin-bottom:30px; margin-top:5px;">
 +
<h3>CONTACT US</h3>
 +
<div style="text-align:center;">
 +
<a href="mailto:igembuhw@gmail.com">
 +
<img src="https://static.igem.org/mediawiki/2017/7/74/MARS_WHITEEmail.png" style="height:60px; margin-top:20px;">
 +
</a>
 +
<a href="https://www.instagram.com/buigemhardware/?hl=en">
 +
<img src="https://static.igem.org/mediawiki/2017/9/93/MARS_Final_insta.png" style="height:60px; margin-top:20px;">
 +
</a>
 +
<a href="https://twitter.com/igemhwbu">
 +
<img src="https://static.igem.org/mediawiki/2017/b/b6/MARS_Twitter_White.png" style="height:60px; margin-top:20px;">
 +
</a>
 +
</div>
 +
</div>
 +
<div class="col-md-10" style="margin-bottom:30px;">
 +
<img src="https://static.igem.org/mediawiki/2017/0/0e/MARS_SponsorsFinal.png" style="width:100%; margin-top:30px;" usemap="#image-map">
 +
</div>
 +
</div>
 +
 +
</div>
 +
 +
 
</div>
 
</div>
 
</body>
 
</body>

Revision as of 20:24, 30 October 2017

BostonU_HW

PCR

Summary

PCR, or polymerase chain reaction, is a commonly used protocol in synthetic biology in order to replicate target DNA fragments. Through the use of specific primers, polymerases, and temperature cycling, exponential replicas of the target DNA fragment can be made. These fragments can then be ligated into plasmids and transformed into bacteria.
This microfluidic chip is designed to perform PCR. A solution containing the required substrates for PCR is flowed into the chip and through a mixer, on top of chip a heating element will be placed. The valves at both ends of the mixer are closed, isolating the mixture, and then the heating element performs temperature cycling. The liquid is then pushed out into an output receptacle for future use in the lab.

This chip has been milled and tested, but not deemed fully fluid functional as of this time. For a more complete understanding of the chip, click the download button in order to access its CNC millable SVG files, JSON file, full device documentation and PNG files of its flow and control layers.