Difference between revisions of "Team:BostonU HW/IntrouF"

 
(89 intermediate revisions by 3 users not shown)
Line 8: Line 8:
 
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
 
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
  
<title>Introduction to Microfluidics</title>
+
<title>Microfluidics 101</title>
  
 
<meta content='width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0' name='viewport' />
 
<meta content='width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0' name='viewport' />
Line 14: Line 14:
 
<!-- EXTRA STYLING -->
 
<!-- EXTRA STYLING -->
 
<style>
 
<style>
 +
#HQ_page td{
 +
vertical-align:top!important;
 +
}
 
.Title{
 
.Title{
 
color: red;
 
color: red;
 
}
 
}
 
#page_background{
 
#page_background{
background-image: url("https://static.igem.org/mediawiki/2017/0/02/MARSbackground.png");
+
background-image: url("https://static.igem.org/mediawiki/2017/9/94/LARGE_background_MARS.png");
 +
background-size:100%;
 
}
 
}
 
.text{
 
.text{
Line 51: Line 55:
 
#Header_Pic{
 
#Header_Pic{
 
height: 60%;
 
height: 60%;
 +
}
 +
#BACKGROUND{
 +
width: 100%;
 +
 +
position: absolute;
 
}
 
}
 
#MARS{
 
#MARS{
height: 25%;
 
 
width: 15%;
 
width: 15%;
 
position: absolute;
 
position: absolute;
z-index: 1;
 
 
margin-top: 8%;
 
margin-top: 8%;
margin-left: 6%;
+
margin-left: 5%;
}
+
#BACKGROUND{
+
width: 100%;
+
height: 50%;
+
position: absolute;
+
 
}
 
}
 
#TITLE{
 
#TITLE{
 
position: absolute;
 
position: absolute;
width: 100%;
+
width: 75%;
height: 60%;
+
margin-left: 22%;
z-index: 2;
+
margin-top: 11%;
 
}
 
}
 
.main{
 
.main{
Line 90: Line 92:
 
<div class="wrapper" id="page_background">
 
<div class="wrapper" id="page_background">
 
<div class="header" id="Header_Pic">
 
<div class="header" id="Header_Pic">
<img src="https://static.igem.org/mediawiki/2017/0/02/MARSbackground.png" id="BACKGROUND">
+
<img src="https://static.igem.org/mediawiki/2017/9/94/LARGE_background_MARS.png" id="BACKGROUND">
<img src="https://static.igem.org/mediawiki/2017/2/22/MARSLogo2.png" id="MARS">
+
<div class="container" margin-top:"2%;">
<img src="https://static.igem.org/mediawiki/2017/c/cb/UF101.png" id="TITLE">
+
<div class="col-md-3">
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/2/22/MARSLogo2.png" width="100%" style="margin-top:-37%;">
 +
</div>
 +
<div class="col-md-9" style="color:#eef1f5; font-size:80px; font-family:Arial,Gadget,sans-serif; margin-top:-2.5%;">
 +
Introduction to<br><br><br><br>Microfluidics
 +
</div>
 +
</div>
 
</div>
 
</div>
<div class="main main-raised">
+
<div class="main main-raised" style="margin-top:2%;">
 
<div class="container">
 
<div class="container">
<div class="col-md-8">
+
<div class="col-md-9">
<h2 class="text-center">Get Ready to Learn about Microfludics!</h2>
+
<h2 class="text-center"><b>Microfluidics 101</b></h2>
 
<div class="text_section">
 
<div class="text_section">
<div class="text">
+
<div class="text" style="margin-bottom:3%;">
Donec consequat scelerisque metus ut auctor. Sed quis leo lacinia, euismod purus ut, scelerisque libero. Morbi eu magna lobortis augue gravida venenatis ac aliquam ante. Vestibulum eget accumsan mi. Aenean vel ullamcorper mi. Fusce eu risus interdum, dignissim enim eget, tincidunt nisi. Sed orci lorem, pellentesque fermentum mattis vel, consequat ac nulla. In feugiat, massa eu finibus aliquet, ligula urna tristique diam, tincidunt venenatis magna tellus eu neque. Ut eu feugiat dui, et vulputate lacus. Donec sit amet urna non eros varius scelerisque vel ac mauris. Proin vitae orci eget lorem porta commodo. Morbi laoreet ullamcorper dictum. Donec quis est vehicula, consequat lectus non, facilisis metus. Pellentesque feugiat suscipit nisl, at pharetra ligula varius a. Nulla facilisi.
+
One of the limitations we identified early on in our project was the lack of concise and clear information about microfluidics for researchers in Synthetic Biology. Using the iGEM poll we were able to confirm this suspicion and understand what the synbio community wanted us to design for them.
 +
<br>
 +
<br>
 +
As a result, the first stage of MARS is increasing the understanding of microfluidics. Under this section we have included a brief introduction to microfluidics as a whole and an explanation of how our continuous flow devices function. A primitive guide has also been included so researchers can identify and understand the function of each element on their chips. This guide can also be used in conjunction with the software tool 3Duf in order to design your own chip, or to adapt and iterate on our designs in the MARS Repository.
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
<div class="col-md-2 col-md-offset-1">
+
<div class="col-md-3">
<h2> <u>Contents</u> </h2>
+
<h2 style="text-align:center;"> <b>Contents</b> </h2>
<ul>
+
<!-- <ul>
<li><a href="#uF_101">Microfluidics 101</a></li>
+
<li><a href="#Intro_uF">Introduction to Microfluidics</a></li>
 +
<br>
 
<li><a href="#Primitive_Table">Primitive Table</a></li>
 
<li><a href="#Primitive_Table">Primitive Table</a></li>
<li><a href="Videos">HEADING 3</a></li>
 
</ul>
 
</div>
 
</div>
 
<div class="container">
 
 
<br>
 
<br>
<h2> <u>Microfluidics 101</u> </h2>
+
<li><a href="#Videos">Tutorial Videos</a></li>
<div class="text_section">
+
</ul> -->
<div class="text">
+
<button class="btn btn-primary btn-round btn-danger"><a href="#Intro_uF" style="color:white;">Introduction to Microfluidics</a></button>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed ex dolor, gravida at luctus sed, sagittis a dui. Sed tristique pharetra magna ut pretium. Nam at mi at odio varius placerat vel at nisl. Suspendisse at risus a sapien dictum elementum imperdiet ut diam. Aenean tristique dapibus ex, quis pretium tortor scelerisque quis. Nam egestas convallis lacus eu faucibus. Vestibulum et dolor volutpat erat luctus auctor. Nunc blandit ligula sed odio volutpat aliquet. Fusce vitae nisl tortor. Donec fermentum ornare nisi ut molestie. Interdum et malesuada fames ac ante ipsum primis in faucibus. Suspendisse vestibulum porta diam, quis convallis diam luctus nec.
+
<br>
</div>
+
<button class="btn btn-primary btn-round btn-danger"><a href="#Primitive_Table" style="color:white;">Primitive Table</a></button>
 +
<br>
 +
<button class="btn btn-primary btn-round btn-danger"><a href="#Videos" style="color:white;">Tutorial Videos</a></button>
 +
<br>
 
</div>
 
</div>
</br>
+
</div>
 
</div>
 
</div>
<br>
+
 
 +
<div class="main main-raised" style="margin-top:5%;" id="Intro_uF">
 +
<div class="container">
 +
<h2 class="text-center"> <b>Introduction to Microfluidics</b> </h2>
 +
</div>
 
<div class="container">
 
<div class="container">
 
<h3>What is Microfluidics?</h3>
 
<h3>What is Microfluidics?</h3>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
Microfluidics is the manipulation of microlitre volumes of liquid in order to perform scientific experiments. This is performed on devices called microfluidic chips that can be made of polycarbonate, glass or silicone.
+
Microfluidics is the manipulation of microliter volumes of liquid in order to perform scientific experiments. This is performed on devices called microfluidic chips that can be made of polycarbonate, glass or silicone.
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
</br>
 
 
<br>
 
<br>
 
<div class="container">
 
<div class="container">
<h3>What is a Microfluidic Chip?</h3>
+
<h3 class>What is a Microfluidic Chip?</h3>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
A continuous flow microfluidic chip typically consists of three layers: a flow layer and control layer with a flexible layer of PDMS between them. There are many other types of microfluidics such as digital or paper which operate using different mechanisms, however we will focus on continuous flow chips as this is the type utilised by MARS.
+
A continuous flow microfluidic chip typically consists of three layers: a flow layer and control layer with a flexible layer of PDMS between them. There are many other types of microfluidics such as digital or paper which operate using different mechanisms, however we will focus on continuous flow chips as this is the type utilized by MARS.<br><br>
 
</div>
 
</div>
 
</div>
 
</div>
<div class="col-md-4">
+
<div class="col-md-3">
<img src="https://static.igem.org/mediawiki/2017/5/5f/LysisFlow.png" alt="Picture" id="info_pic">
+
<img src="https://static.igem.org/mediawiki/2017/thumb/0/08/Pdmsintro.png/900px-Pdmsintro.png" width = "550 px"alt="Picture" >
 
</div>
 
</div>
<div class="col-md-4" id="info">
+
<div class="col-md-5" id="info">
<br>
+
 
<h4 class="text-center">Control Layer</h4>
+
<button class="btn btn-danger btn-round"><span style="font-size:17px;">Control Layer</span></button>
<div class="text_section text-center">
+
<div class="text_section">
 
<div class="text">
 
<div class="text">
This is the section that will talk about Control layer.
+
 
 +
<br><b>Material:</b> Polycarbonate<br>The Control layer of a microfluidic is used to actuate the flexible PDMS layer in order to manipulate fluid flow through the flow layer. For example, by actuating a syringe attached to the control layer, a valve can be opened.<br>
 
</div>
 
</div>
 
</div>
 
</div>
<h4 class="text-center">PDMS Layer</h4>
+
<br>
<div class="text_section text-center">
+
<button class="btn btn-default btn-round" ><span style="font-size:17px;">PDMS Layer</span></button>
 +
 
 +
<div class="text_section" >
 
<div class="text">
 
<div class="text">
This is the section that will talk about PDMS layer.
+
<br><b>Material:</b> Polydimethylsiloxane<br>
 +
The PDMS layer of a microfluidic lies between the flow and control layers. This flexible membrane allows for a seal to be created between the two polycarbonate layers. PDMS can be actuated to manipulate fluid flow in valved designs.<br><br>
 
</div>
 
</div>
 
</div>
 
</div>
<h4 class="text-center">Flow Layer</h4>
+
 
<div class="text_section text-center">
+
<button class="btn btn-info btn-round"><span style="font-size:17px;">Flow Layer</span></button>
 +
<div class="text_section">
 
<div class="text">
 
<div class="text">
These features are called “primitives”. The Control layer allows us to move the elastic PDMS layer in the middle to further manipulate the flow layer, typically by opening or closing valves.
+
<br><b>Material:</b> Polycarbonate<br>
To further understand how primitives work click on the following link: <a href="#Primitive_Table">Primitive Table</a>
+
The Flow layer of a microfluidic is the layer that liquid(s) flow through. Etchings on this layer, known as primitives, are used to manipulate and alter fluid flow. For more information regarding primitives refer to the <a href="#Primitive_Table">Primitive Table</a>.
 
</div>
 
</div>
 
</div>
 
</div>
Line 168: Line 187:
 
</div>
 
</div>
 
</div>
 
</div>
</br>
 
<br>
 
 
<div class="container">
 
<div class="container">
<h3>How does this apply to Synthetic Biology?</h3>
+
<h3>How can Microfluidics Apply to Synthetic Biology?</h3>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
Microfluidic chips can be designed to perform various procedures used in synthetic biology. However, microfluidics is often an overlooked tool because designing and using chips requires specialized knowledge.
+
Microfluidic chips can be designed to perform various procedures used in synthetic biology. There are many advantages to integrating microfluidic devices into a synthetic biology laboratory. For example, these devices utilize microliter volumes of liquid which decreases reagent waste, allows for more trials to be performed with the same volume of reagents and lowers costs as reduced reagent volumes can be effectively utilized. Furthermore, complete protocols can be transferred onto a single chip and automated. Due to their microliter handling abilities, multiplexed systems can also be run on a single compact chip. As a result, researchers can save significant amounts of time spent on performing protocols in the lab and simply run a single chip instead. Using our fabrication system, researchers can also rapidly produce microfluidic devices at low cost to easily integrate into their lab environment.
 +
 
 +
<br>
 +
<br>
 
</div>
 
</div>
 
</div>
 
</div>
Line 181: Line 201:
 
</div>
 
</div>
  
<div class="main main-raised" style="margin-top:5%;">
+
<div class="main main-raised" style="margin-top:5%; margin-bottom:5%;">
 
<div class="container" id="Primitive_Table">
 
<div class="container" id="Primitive_Table">
<h2 class="title"> <u>Primitive Table</u> </h2>
+
<h2 class="text-center"> <b>Primitive Table</b> </h2>
<table class="table">
+
<table class="table" style="margin-bottom:5%;">
 
<thead>
 
<thead>
 
<tr>
 
<tr>
Line 195: Line 215:
 
<tr>
 
<tr>
 
<td class="text-center">
 
<td class="text-center">
<u>Channel</u>
+
<b>Channel</b><br>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer volutpat, mi feugiat blandit feugiat, ante nisl dictum lacus, in egestas ligula nulla eu ex. Quisque vel justo congue, volutpat neque at, placerat nulla. Nam malesuada tellus sed justo pretium, eu vulputate mauris elementum.
+
<br>Carry fluid through the chip and between other primitives
 +
                                          <br> <br><br> <b> Design Parameters: </b><br>
 +
<br>Channel Width
 +
<br>Channel Length
 +
        <br>
 +
                                          </td>
 +
</div>
 +
</div>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/1/1d/Channelsvg.png" alt="DESIGN Channel" width = "300 px"></td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/b/b6/Channels.png" alt="DESIGN Channel" width = "300 px"></td>
 +
</tr>
 +
<tr>
 +
<td class="text-center">
 +
<b>Ports</b><br>
 +
<div class="text_section">
 +
<div class="text">
 +
<br>Used to input or output fluids from a chip. At least two ports are necessary for a single chip, one to input fluid and the other to output it at the end
 +
                                        <br> <br><br> <b> Design Parameters: </b><br>
 +
<br>Port Radius
 +
        <br>
 
</div>
 
</div>
 
</div>
 
</div>
 
</td>
 
</td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/0/0d/Portsvg.png" alt="DESIGN Channel" width = "300 px"></td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/8/8b/Port.png" alt="DESIGN Channel" width = "300 px"></td>
 
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td class="text-center">
 
<td class="text-center">
<u>Mixer</u>
+
<b>Mixer</b><br>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer volutpat, mi feugiat blandit feugiat, ante nisl dictum lacus, in egestas ligula nulla eu ex. Quisque vel justo congue, volutpat neque at, placerat nulla. Nam malesuada tellus sed justo pretium, eu vulputate mauris elementum.
+
<br>Mixes two or more liquids together
 +
                                      <br> <br><br> <b> Design Parameters: </b><br>
 +
<br>Bend Spacing
 +
<br>Number of Bends
 +
                                      <br>Bend Length
 +
                                      <br>Channel Width
 +
        <br>
 
</div>
 
</div>
 
</div>
 
</div>
 
</td>
 
</td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/e/e4/Mixersvg.png" alt="DESIGN Channel" width = "300 px"></td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/54/Mixer_og.png" alt="DESIGN Channel" width = "300 px"></td>
 
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td class="text-center">
 
<td class="text-center">
<u>3-D Valve</u>
+
<b>Curved Mixer</b><br>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer volutpat, mi feugiat blandit feugiat, ante nisl dictum lacus, in egestas ligula nulla eu ex. Quisque vel justo congue, volutpat neque at, placerat nulla. Nam malesuada tellus sed justo pretium, eu vulputate mauris elementum.
+
<br>An iteration on the previous mixer. Mixes two or more liquids together but has improved fluid flow due to its curved design
 +
                                        <br> <br><br> <b> Design Parameters: </b><br>
 +
<br>Bend Spacing
 +
<br>Number of Bends
 +
                                      <br>Bend Length
 +
                                      <br>Channel Width
 +
        <br><br>
 
</div>
 
</div>
 
</div>
 
</div>
 
</td>
 
</td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/e/ec/Cmixersvg.png" alt="DESIGN Channel" width = "300 px"></td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/4/4d/Mixer.png" alt="DESIGN Channel" width = "300 px"></td>
 
+
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td class="text-center">
 
<td class="text-center">
<u>Chamber</u>
+
<b>3-D Valve</b><br>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer volutpat, mi feugiat blandit feugiat, ante nisl dictum lacus, in egestas ligula nulla eu ex. Quisque vel justo congue, volutpat neque at, placerat nulla. Nam malesuada tellus sed justo pretium, eu vulputate mauris elementum.
+
<br>Blocks the flow of fluids through a channel. Can be opened to allow liquid to flow through
 +
                                        <br> <br> <br><b> Design Parameters: </b><br>
 +
<br>Valve Radius
 +
<br>Gap Width
 +
        <br>
 
</div>
 
</div>
 
</div>
 
</div>
 
</td>
 
</td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/6/66/Valvesvg.png" alt="DESIGN Channel" width = "300 px"></td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/5e/Valves.png" alt="DESIGN Channel" width = "300 px"></td>
 +
</tr>
 +
<tr>
 +
<td class="text-center">
 +
<b>Circle Valve</b><br>
 +
<div class="text_section">
 +
<div class="text">
 +
<br>Used in conjunction with the 3D valve. For any 3D valve on the flow layer, there must be a circle valve placed directly above it on the control layer
 +
                                        <br> <br> <br><b> Design Parameters: </b><br>
 +
<br>Valve Radius
 +
        <br>
 +
</div>
 +
</div>
 +
</td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/d/de/Cvalvesvg.png" alt="DESIGN Channel" width = "300 px"></td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/1/1c/Circlevalve.png" alt="DESIGN Channel" width = "300 px" ></td>
 +
</tr>
 +
<tr>
 +
<td class="text-center">
 +
<b>Diamond Chamber</b><br>
 +
<div class="text_section">
 +
<div class="text">
 +
<br>Can be filled with fluid for various applications, for example to incubate a solution.
 +
                                        <br> <br> <br><b> Design Parameters: </b><br>
 +
<br>Entering and Exiting Channel Width
 +
<br>Chamber Length
 +
                                      <br>Chamber Width
 +
                                      <br><br>
 +
</div>
 +
</div>
 +
</td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/4/45/Diamondsvg.png" alt="DESIGN Channel" width = "300 px"></td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/6/62/Chamber.png" alt="DESIGN Channel" width = "300 px"></td>
  
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td class="text-center">
 
<td class="text-center">
<u>Metering</u>
+
<b>Trees</b><br>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer volutpat, mi feugiat blandit feugiat, ante nisl dictum lacus, in egestas ligula nulla eu ex. Quisque vel justo congue, volutpat neque at, placerat nulla. Nam malesuada tellus sed justo pretium, eu vulputate mauris elementum.
+
<br>Allows for fluid to be evenly split into two or more separate channels
 +
                                        <br> <br><br> <b> Design Parameters: </b><br>
 +
<br>Channel Widths
 +
        <br>
 
</div>
 
</div>
 
</div>
 
</div>
 
</td>
 
</td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/3/38/Treesvg.png" alt="DESIGN Channel" width = "300 px"></td>
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/5/50/AntiFlow.png" alt="DESIGN Channel" id="Pics"></td>
+
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/f/ff/Treemilled.png" alt="DESIGN Channel" width = "300 px"></td>
 +
</tr>
 +
<tr>
 +
<td class="text-center">
 +
<b>Transition</b><br>
 +
<div class="text_section">
 +
<div class="text">
 +
<br>Provides a smooth transition point between two primitives of different sizes. For example, between channels of width 800um and 1500um.
 +
                                        <br> <br> <br><b> Design Parameters: </b><br>
 +
<br>Entering Channel Width
 +
<br>Exiting Channel Width
 +
                                      <br>Length
 +
        <br><br>
 +
</div>
 +
</div>
 +
</td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/4/49/Transitionsvg.png" alt="DESIGN Channel" width = "300 px"></td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/7/7a/Transition.png" alt="DESIGN Channel" width = "300 px" ></td>
 +
</tr>
 +
<tr>
 +
<td class="text-center">
 +
<b>Metering</b><br>
 +
<div class="text_section">
 +
<div class="text">
 +
<br>Allows for accurate volumes to be measured and dispensed. Made up of valves and channels. Multiple metering sections can be used to dispense different fluid volumes on a single system.
 +
                                    <br> <br><br> <b> Design Parameters: </b><br>
 +
<br> No features listed as this module has yet to be integrated into the existing software system.
 +
        <br><br>
 +
</div>
 +
</div>
 +
</td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/7/71/Meteringsvg.png" alt="DESIGN Channel" width = "300 px" ></td>
 +
<td id="Design"><img src="https://static.igem.org/mediawiki/2017/1/14/Meteringmilled.png" alt="DESIGN Channel" width ="300 px"></td>
 
</tr>
 
</tr>
 
</tbody>
 
</tbody>
 
</table>
 
</table>
 
</div>
 
</div>
 +
 +
</div>
 +
 +
<div class="main main-raised"id="Videos">
 +
<div class="container">
 +
<h2 class="text-center"><b>MARS Tutorial Videos</b></h2>
 +
<div class="row">
 +
<div class="col-md-6">
 +
<h3>Summary</h3>
 +
<div class="text_section">
 +
<div class="text">
 +
In this section you will find our Microfluidics 101 video tutorials. These videos take you through the basics of fabricating and using MARS microfluidic chips. Each is a fully narrated, step-by-step guide teaching you how to mill, make PDMS, and more! For those who prefer reading, each video is accompanied by an in-depth, printable written protocol.
 +
<br>
 +
<br>
 +
This branch of MARS was validated by our iGEM poll. When we reached out to teams regarding what educational materials they would find useful, one of the highest voted tools were video tutorials with 73.8% of responses indicating video tutorials would help them start using microfluidics. This idea was also pitched to various microfluidic manufacturing companies who advised us on specific elements to include. For example, including written content in the form of protocols was suggested in order to provide a written guide to be carried into laboratory settings or referred to when offline. The inclusion of our “Cleaning” video was inspired by Black Hole Lab’s emphasis on proper cleaning and storage of their chips during training seminars for lab technicians.
 +
</div>
 +
</div>
 +
</div>
 +
<div class="col-md-6" style="text-align:center;" >
 +
<img src="https://static.igem.org/mediawiki/2017/thumb/e/ef/Videographic.png/750px-Videographic.png" width = "475 px" alt="Picture" id="Shane">
 +
</div>
 +
</div>
 +
</div>
 +
<br><br>
 +
<div class="container">
 +
 +
<div class="col-md-5" style="padding-left:0px !important;"><h3>Microfluidics 101: How to Mill a Chip</h3>
 +
 +
<div class="center_text_section">
 +
<div class="center_text">
 +
This video teaches viewers step-by-step how to correctly mill a MARS archive microfluidic chip. Steps include preparing the polycarbonate, setting up design files in Otherplan, and changing endmills.
 +
<br><br>
 +
<div style="text-align:center; margin:auto;">
 +
<a href="https://static.igem.org/mediawiki/2017/2/25/UF101_Milling_Protocol.pdf" style="color:white;" download>
 +
<button class="btn btn-primary btn-lg btn-danger">Download Protocol Here!<i class="material-icons">get_app</i></button>
 +
</a>
 +
</div>
 +
</div>
 +
</div>
 +
</div>
 +
<div class="col-md-7">
 +
<video style="width:100%;" controls>
 +
  <source src="https://static.igem.org/mediawiki/2017/3/34/MARS_MillingVidFINAL.mp4" >
 +
</video>
 +
</div>
 +
</div>
 +
 +
<br><br><div class="container">
 +
 +
<div class="col-md-5" style="padding-left:0px !important;"><h3>Microfluidics 101: How to Make PDMS</h3>
 +
<div class="center_text_section">
 +
<div class="center_text">
 +
This video teaches viewers what PDMS is, how to manufacture PDMS in the lab, and how to properly cut it down to size for a microfluidic chip.
 +
<br><br>
 +
<div style="text-align:center; margin:auto;">
 +
<a href="https://static.igem.org/mediawiki/2017/3/3b/UF101_PDMS_Protocol.pdf" style="color:white;" download>
 +
<button class="btn btn-primary btn-lg btn-danger">Download Protocol Here!<i class="material-icons">get_app</i></button>
 +
</a>
 +
</div>
 +
</div>
 +
</div>
 +
</div>
 +
<div class="col-md-7">
 +
<video style="width:100%;" controls>
 +
<source src="https://static.igem.org/mediawiki/2017/e/ef/MARS_PDMSVid.mp4" type="video/mp4">
 +
</video>
 +
</div>
 +
</div>
 +
 +
<br><br><div class="container">
 +
 +
<div class="col-md-5" style="padding-left:0px !important;"><h3>Microfluidics 101: How to Assemble a Chip</h3>
 +
<div class="center_text_section">
 +
<div class="center_text">
 +
This video teaches viewers how to properly clean, port, and assemble a microfluidic chip from its basic components.
 +
<br><br>
 +
<div style="text-align:center; margin:auto;">
 +
<a href="https://static.igem.org/mediawiki/2017/d/da/UF101_Assembly_Protocol.pdf" style="color:white;" download>
 +
<button class="btn btn-primary btn-lg btn-danger">Download Protocol Here!<i class="material-icons">get_app</i></button>
 +
</a>
 +
</div>
 +
</div>
 +
</div>
 +
</div>
 +
<div class="col-md-7">
 +
<video style="width:100%;" controls>
 +
<source src="https://static.igem.org/mediawiki/2017/0/03/MARS_AssemblyVid.mp4" type="video/mp4">
 +
</video>
 +
</div>
 +
</div>
 +
 +
<br><br><div class="container">
 +
 +
<div class="col-md-5" style="padding-left:0px !important;"><h3>Microfluidics 101: How to Clean a Chip</h3>
 +
<div class="center_text_section">
 +
<div class="center_text">
 +
This video teaches viewers how to correctly deconstruct and clean all components of a chip. It includes written protocols for cleaning chips that have run oil or biological material through them.
 +
<br><br>
 +
<div style="text-align:center; margin:auto;">
 +
<a href="https://static.igem.org/mediawiki/2017/2/2a/UF101_Cleaning_Protocol.pdf" style="color:white;" download>
 +
<button class="btn btn-primary btn-lg btn-danger">Download Protocol Here!<i class="material-icons">get_app</i></button>
 +
</a>
 +
</div>
 +
</div>
 +
</div>
 +
</div>
 +
<div class="col-md-7" style="margin-bottom:3%;">
 +
<video style="width:100%;" controls>
 +
<source src="https://static.igem.org/mediawiki/2017/3/3c/MARS_CleaningVid.mp4" type="video/mp4">
 +
</video>
 +
</div>
 +
</div>
  
 
</div>
 
</div>
 
          </div>
 
          </div>
 +
<!-- THIS IS FOOTER -->
 +
<div class="wrapper" style="background:#1c1f1f; margin-top:0px;margin-right:0px !important; margin-left:0px !important;" id="Footer">
 +
  <div class="container" style="text-align:center !important">
 +
 +
    <div class="col-md-2" style="color:white; margin-bottom:30px; margin-top:5px;">
 +
      <h3>CONTACT US</h3>
 +
    <div style="text-align:center;">
 +
      <a href="mailto:igembuhw@gmail.com">
 +
      <img src="https://static.igem.org/mediawiki/2017/7/74/MARS_WHITEEmail.png" style="height:60px; margin-top:20px;">
 +
      </a>
 +
        <a href="https://www.instagram.com/buigemhardware/?hl=en">
 +
        <img src="https://static.igem.org/mediawiki/2017/9/93/MARS_Final_insta.png" style="height:60px; margin-top:20px;">
 +
      </a>
 +
          <a href="https://twitter.com/igemhwbu">
 +
          <img src="https://static.igem.org/mediawiki/2017/b/b6/MARS_Twitter_White.png" style="height:60px; margin-top:20px;">
 +
          </a>
 +
      </div>
 +
      </div>
 +
      <div class="col-md-10" style="margin-bottom:30px;">
 +
        <img src="https://static.igem.org/mediawiki/2017/0/0e/MARS_SponsorsFinal.png" style="width:100%; margin-top:30px;" usemap="#image-map">
 +
    </div>
 +
</div>
 +
 +
</div>
 +
 
</div>
 
</div>
 
</body>
 
</body>

Latest revision as of 02:10, 1 November 2017

BostonU_HW

Microfluidics 101
Introduction to



Microfluidics

Microfluidics 101

One of the limitations we identified early on in our project was the lack of concise and clear information about microfluidics for researchers in Synthetic Biology. Using the iGEM poll we were able to confirm this suspicion and understand what the synbio community wanted us to design for them.

As a result, the first stage of MARS is increasing the understanding of microfluidics. Under this section we have included a brief introduction to microfluidics as a whole and an explanation of how our continuous flow devices function. A primitive guide has also been included so researchers can identify and understand the function of each element on their chips. This guide can also be used in conjunction with the software tool 3Duf in order to design your own chip, or to adapt and iterate on our designs in the MARS Repository.

Introduction to Microfluidics

What is Microfluidics?

Microfluidics is the manipulation of microliter volumes of liquid in order to perform scientific experiments. This is performed on devices called microfluidic chips that can be made of polycarbonate, glass or silicone.

What is a Microfluidic Chip?

A continuous flow microfluidic chip typically consists of three layers: a flow layer and control layer with a flexible layer of PDMS between them. There are many other types of microfluidics such as digital or paper which operate using different mechanisms, however we will focus on continuous flow chips as this is the type utilized by MARS.

Picture

Material: Polycarbonate
The Control layer of a microfluidic is used to actuate the flexible PDMS layer in order to manipulate fluid flow through the flow layer. For example, by actuating a syringe attached to the control layer, a valve can be opened.


Material: Polydimethylsiloxane
The PDMS layer of a microfluidic lies between the flow and control layers. This flexible membrane allows for a seal to be created between the two polycarbonate layers. PDMS can be actuated to manipulate fluid flow in valved designs.


Material: Polycarbonate
The Flow layer of a microfluidic is the layer that liquid(s) flow through. Etchings on this layer, known as primitives, are used to manipulate and alter fluid flow. For more information regarding primitives refer to the Primitive Table.

How can Microfluidics Apply to Synthetic Biology?

Microfluidic chips can be designed to perform various procedures used in synthetic biology. There are many advantages to integrating microfluidic devices into a synthetic biology laboratory. For example, these devices utilize microliter volumes of liquid which decreases reagent waste, allows for more trials to be performed with the same volume of reagents and lowers costs as reduced reagent volumes can be effectively utilized. Furthermore, complete protocols can be transferred onto a single chip and automated. Due to their microliter handling abilities, multiplexed systems can also be run on a single compact chip. As a result, researchers can save significant amounts of time spent on performing protocols in the lab and simply run a single chip instead. Using our fabrication system, researchers can also rapidly produce microfluidic devices at low cost to easily integrate into their lab environment.


Primitive Table

Primitive Design Mill
Channel

Carry fluid through the chip and between other primitives


Design Parameters:

Channel Width
Channel Length
DESIGN Channel DESIGN Channel
Ports

Used to input or output fluids from a chip. At least two ports are necessary for a single chip, one to input fluid and the other to output it at the end


Design Parameters:

Port Radius
DESIGN Channel DESIGN Channel
Mixer

Mixes two or more liquids together


Design Parameters:

Bend Spacing
Number of Bends
Bend Length
Channel Width
DESIGN Channel DESIGN Channel
Curved Mixer

An iteration on the previous mixer. Mixes two or more liquids together but has improved fluid flow due to its curved design


Design Parameters:

Bend Spacing
Number of Bends
Bend Length
Channel Width

DESIGN Channel DESIGN Channel
3-D Valve

Blocks the flow of fluids through a channel. Can be opened to allow liquid to flow through


Design Parameters:

Valve Radius
Gap Width
DESIGN Channel DESIGN Channel
Circle Valve

Used in conjunction with the 3D valve. For any 3D valve on the flow layer, there must be a circle valve placed directly above it on the control layer


Design Parameters:

Valve Radius
DESIGN Channel DESIGN Channel
Diamond Chamber

Can be filled with fluid for various applications, for example to incubate a solution.


Design Parameters:

Entering and Exiting Channel Width
Chamber Length
Chamber Width

DESIGN Channel DESIGN Channel
Trees

Allows for fluid to be evenly split into two or more separate channels


Design Parameters:

Channel Widths
DESIGN Channel DESIGN Channel
Transition

Provides a smooth transition point between two primitives of different sizes. For example, between channels of width 800um and 1500um.


Design Parameters:

Entering Channel Width
Exiting Channel Width
Length

DESIGN Channel DESIGN Channel
Metering

Allows for accurate volumes to be measured and dispensed. Made up of valves and channels. Multiple metering sections can be used to dispense different fluid volumes on a single system.


Design Parameters:

No features listed as this module has yet to be integrated into the existing software system.

DESIGN Channel DESIGN Channel

MARS Tutorial Videos

Summary

In this section you will find our Microfluidics 101 video tutorials. These videos take you through the basics of fabricating and using MARS microfluidic chips. Each is a fully narrated, step-by-step guide teaching you how to mill, make PDMS, and more! For those who prefer reading, each video is accompanied by an in-depth, printable written protocol.

This branch of MARS was validated by our iGEM poll. When we reached out to teams regarding what educational materials they would find useful, one of the highest voted tools were video tutorials with 73.8% of responses indicating video tutorials would help them start using microfluidics. This idea was also pitched to various microfluidic manufacturing companies who advised us on specific elements to include. For example, including written content in the form of protocols was suggested in order to provide a written guide to be carried into laboratory settings or referred to when offline. The inclusion of our “Cleaning” video was inspired by Black Hole Lab’s emphasis on proper cleaning and storage of their chips during training seminars for lab technicians.
Picture


Microfluidics 101: How to Mill a Chip

This video teaches viewers step-by-step how to correctly mill a MARS archive microfluidic chip. Steps include preparing the polycarbonate, setting up design files in Otherplan, and changing endmills.



Microfluidics 101: How to Make PDMS

This video teaches viewers what PDMS is, how to manufacture PDMS in the lab, and how to properly cut it down to size for a microfluidic chip.



Microfluidics 101: How to Assemble a Chip

This video teaches viewers how to properly clean, port, and assemble a microfluidic chip from its basic components.



Microfluidics 101: How to Clean a Chip

This video teaches viewers how to correctly deconstruct and clean all components of a chip. It includes written protocols for cleaning chips that have run oil or biological material through them.