Difference between revisions of "Team:BIT-China/Model/GPCRpathway"

 
(25 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{BIT-China}}
 
{{BIT-China}}
 
<html>
 
<html>
<script src="https://2017.igem.org/Team:BIT-China/src/js/modernizr?action=raw&ctype=text/javascript"></script>
+
<style>
  <link rel="stylesheet" href="https://2017.igem.org/Team:BIT-China/src/css/style6?action=raw&ctype=text/css" />
+
     .my-content-box .formula50 {
  <style>
+
  width: 55%;
     .my-content-box .formula2 {
+
          height: auto;
  width: 70%;
+
  margin-bottom: -20px;
  margin-bottom: -50px;
+
 
}
 
}
 
   </style>
 
   </style>
Line 13: Line 12:
 
      <img src="https://static.igem.org/mediawiki/2017/a/a5/Bit-china-2017modeling.jpg" alt="">
 
      <img src="https://static.igem.org/mediawiki/2017/a/a5/Bit-china-2017modeling.jpg" alt="">
 
    </div>
 
    </div>
 +
    <section class="content_container" id="mytop">
 +
<h2 class="title-h2">Mating pheromone pathway model</h2>
 +
<p class="my-content-p">We expected to use mRFP intensity to predict the sweetness based on our system. So we needed an insight into relationship between mRFP and sweetness. But lots of factor can impact the signal output so that we decided to divide our system into two parts, <b>single cell model</b> and <b>yeast growth model</b>. </p>
  
  
<section class="content_container" id="mytop">
 
<div class="section-upline cd-section" id="Purpose">
 
<h3 class="title-h3">Purpose</h3>
 
<p class="my-content-p">By establishing the signal transduction model, we can intuitively understand how the sweetener signal conducts in the GPCR and the details of each step of the signal arrival thorough, which provides a powerful help for our transformation of the pathway, amplification of the signal, while the simulation results can also give us the future design of biological sweetness meter to provide theoretical help.</p>
 
</div>
 
  
<div class="section-upline cd-section" id="Method">
+
<div class="cd-section" id="Single">
<h3 class="title-h3">Method</h3>
+
<h3 class="title-h3">Single cell model</h3>
<p class="my-content-p">Our GPCR model based on three presuppositions:
+
<h4 class="title-h4">Purpose</h4>
<ul>
+
<p class="my-content-p">To simulate RFP intensity under different sweetness, we needed to set a model in a single cell firstly. By establishing this model, we could learn about how the sweetness signal transmit in the in yeast coupling pheromone pathway<sup>[3]</sup>, and know each step of the signal transmit in detail, which provides supports for regulating the signal and  improving our bio-meter.</p>
<li class="my-content-li">1. We assume that T1R2-T1R3 receptor does not have synergistic effect.</li>
+
<h4 class="title-h4">Single cell model:</h4>
<li class="my-content-li">2. We hypothesize that the combination between s1</li>
+
<p class="my-content-p">In single cell model, we pay main attention to the signal transduction in pheromone pathway based on<sup>[4]</sup>.And in order to simulate the signal transduction in mathematical way conveniently, we set some hypothesizes of this model:   </p>
<li class="my-content-li">3. We assume that the combination of the rate constant and the initial concentration of the sweeteners and alpha pheromone are consistent.</li>
+
<li class="my-content-li2">1. We assumed that T1R2/T1R3 receptor does not have synergistic effect when it binds with sweeteners.</li>
</ul>
+
<li class="my-content-li2">2. We hypothesized that the number of binding sweetener are consistent when binding to T1R2/T1R3 receptor or pheromone receptor.</li>
</p>
+
<li class="my-content-li2">3. We supposed that the combining rate and the initial binding concentration of sweetener are as same as pheromone receptor’s.</li>
<p class="my-content-p">We establish the equations among variable quantities based on Mass-action law; and we use ordinary differential equations (ODEs) that can be solved by MATLAB. We remake the pheromone signal system in yeast into four modules: T1R2-T1R3 receptor activation, G-protein cycle activation, the MAPK cascade, and gene expression.
+
<li class="my-content-li2">4. There is no influence between cell growth and protein expression in a single cell.</li>
<p class="my-content-p">
+
<li class="my-content-li2">5. Only concern conservation relations of protein concentration in a single cell. The protein involving in the signal transduction is not considers its production or degradation. </li>
 +
<h4 class="title-h4">Method and discussion </h4>
  
 
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">T1R2-T1R3 receptor activation part:</p>
+
                <img class="formula50" src="https://static.igem.org/mediawiki/2017/8/85/T-BIT-China-2017MODEL-16.png" />
<img src="https://static.igem.org/mediawiki/2017/3/3f/BIT-China_model-GPCR_fig1.png"/>  
+
                <span>Fig 8. Sweetness testing pathway in Sugar Hunter</span>
</div>
+
        </div>
 +
<p class="my-content-p">In order to simulate our project systematically, we divided our whole system into four blocks: (a) the activation of T1R2/T1R3 receptor; (b) the activation of G-protein cycle; (c) the cascade reaction of MAPK; and (d) the expression of RFP. And the simulating process and result of each part were shown below.  </p>
 
 
 +
 +
<p class="my-content-p">1. The activation of T1R2/T1R3 receptor:</p>
 +
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">reaction diagram</p>
+
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/f/fc/T-BIT-China-2017MODEL-17.png" />
<p class="my-content-p">It can be modeled in a set of differential equations: </p>
+
              <span>Fig. 9 The mechanism of T1R2/T1R3 receptor’s activation</span>
<img class="formula" src="https://static.igem.org/mediawiki/2017/f/fa/BIT-China_model-GPCR_formula1.png"/>
+
            </div>
</div>
+
+
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">Rate equations:</p>
+
<p class="my-content-p">In this process, T1R2/T1R3 receptor has four different states. And the receptor transfer between these states under the different sweetener-binding conditions. The equations of this process were shown as follow:</p>
<img class="formula" src="https://static.igem.org/mediawiki/2017/7/76/BIT-China_model-GPCR_formula2.png"/>
+
<img class="formula2" src="https://static.igem.org/mediawiki/2017/a/a4/T--BIT-China--2017formula_pic1.png" alt="">
 +
 
 
</div>
 
</div>
 +
<div class="my-img-box">
 +
<span>(T1R2/3: the T1R2-T1R3 receptor. All parameters of this part were listed in Table 1)</span>
 +
</div>
 +
  
 +
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 1. The value of parameters in activation of T1R2/T1R3 receptor </caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                   
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
                        <td>k<sub>1</sub></td>
 +
                        <td>Rate constant of sweetness binding on receptor</td>
 +
                        <td>0.0012</td>
 +
                     
 +
                    </tr>
 +
                    <tr>
 +
                        <td>k<sub>2</sub></td>
 +
                        <td>Rate constant of activated receptor</td>
 +
                        <td>0.6</td>
 +
                     
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>3</sub></td>
 +
                      <td>Rate constant of downregulated receptor</td>
 +
                      <td>0.24</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>4</sub></td>
 +
                    <td>Rate constant of receptor degradation</td>
 +
                    <td>0.024</td>
 +
                   
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 +
 +
 +
 +
<p class="my-content-p">The result of T1R2/T1R3 receptor’s activation was shown below(Fig. 10). It demonstrated that T1R2/T1R3 receptor could respond to different concentration of ligand.</p>
 +
 +
<div class="my-content-box">
 +
            <img class="formula50" src="https://static.igem.org/mediawiki/2017/d/d4/T--BIT-China--2017modeling_pic10.png" />
 +
            <span>Fig. 10. The simulating result of receptor’s activation under the different concentration of ligand</span>
 +
        </div>
 
 
 +
 +
<h4 class="title-h4">2. The activation of G-protein cycle:</h4>
 +
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">G-protein cycle activation part:</p>
+
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/f/fa/T-BIT-China-2017MODEL-18.png" />
<img src="https://static.igem.org/mediawiki/2017/4/45/BIT-China_model-GPCR_fig2.png"/>
+
              <span>Fig. 11 The process of G-protein cycle’s activation</span>
 +
          </div>
 +
<div class="my-content-box">
 +
<p class="my-content-p">After upstream signal was produced, the activated G exchanges GTP in place of GDP<sup>[5]</sup>. Then the G and G<sub>βγ</sub> dimer are dissociated from receptor and then active downstream pathway. Here, we selected the G<sub>βγ</sub> dimer as the output of this part. And the equations of this process were listed as follow: </p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/3/32/T--BIT-China--2017formula_pic2.png" alt="">
 
</div>
 
</div>
 +
 +
 +
 +
<p class="my-content-p">(The parameters of this part were listed in Table 2)</p>
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 2. The value of parameters in G-protein cycle’s activation</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                     
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
                        <td>k<sub>5</sub></td>
 +
                        <td>Rate constant of G<sub>αβγ</sub>'s dissociated</td>
 +
                        <td>0.0036</td>
 +
                       
 +
                    </tr>
 +
                    <tr>
 +
                        <td>k<sub>6</sub></td>
 +
                        <td>Rate constant of G<sub>αβγ</sub>'s Synthetized</td>
 +
                        <td>2000</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>7</sub></td>
 +
                      <td>Rate constant of G<sub>βγ</sub>'s bind with Ste5</td>
 +
                      <td>0.1</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>8</sub></td>
 +
                    <td>Rate constant of G<sub>βγ</sub>'s unbind with Ste5</td>
 +
                    <td>5</td>
 +
                   
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 +
 +
 +
 +
<p class="my-content-p">The result of G-protein cycle’s activation was shown below (Fig. 12). According to the figure, we indicated that our system could transduce upstream signal accurately.</p>
  
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">It can be modeled in a set of differential equations:</p>
+
            <img class="formula50" src="https://static.igem.org/mediawiki/2017/6/62/T--BIT-China--2017modeling_pic12.png" />
<img class="formula" src="https://static.igem.org/mediawiki/2017/7/74/BIT-China_model-GPCR_formula3.png"/>
+
            <span>Fig. 12. The result of G-protein cycle’s activation under the different concentration of ligand</span>
</div>
+
          </div>
 
 
 +
 +
<h4 class="title-h4">The cascade reaction of MAPK:</h4>
 +
 +
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">Rate equations:</p>
+
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/9/9d/T-BIT-China-2017MODEL-19.png" />
<img class="formula" src="https://static.igem.org/mediawiki/2017/1/14/BIT-China_model-GPCR_formula4.png"/>
+
              <span>Fig. 13 The cascade reaction of MAPK</span>
</div>
+
        </div>
+
 
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">The MAPK cascade part:</p>
+
<p class="my-content-p">All proteins in this part belong to the category of kinase and the signal was transmitted through phosphorylation. Finally, Fus3 activates the expression of Ste12 which was regarded as the output of this part. And all equations in this process were listed as follow:</p>
<img src="https://static.igem.org/mediawiki/2017/7/70/BIT-China_model-GPCR_fig3.png"/>
+
<img class="formula2" src="https://static.igem.org/mediawiki/2017/4/45/T--BIT-China--2017formula_pic3.png" alt="">
 
</div>
 
</div>
+
 
 +
 
 +
 
 +
 
 +
<p class="my-content-p">(The parameters of this part were listed in Table 3)</p>
 +
 
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 3. The value of parameters in cascade reaction of MAPK</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                     
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
                      <td>k<sub>7</sub></td>
 +
                      <td>Rate constant of G<sub>βγ</sub>'s bind with Ste5</td>
 +
                      <td>0.1</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>8</sub></td>
 +
                    <td>Rate constant of G<sub>βγ</sub>'s unbind with Ste5</td>
 +
                    <td>5</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>9</sub></td>
 +
                      <td>Rate constant of Ste11's Phosphorylated</td>
 +
                      <td>10</td>
 +
                     
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>10</sub></td>
 +
                    <td>Rate constant of Ste7's double Phosphorylated</td>
 +
                    <td>47</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>11</sub></td>
 +
                      <td>Rate constant of Fus3's double Phosphorylated</td>
 +
                      <td>345</td>
 +
                 
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>12</sub></td>
 +
                    <td>Rate constant of double Phosphorylated Fus3's dissociation.</td>
 +
                    <td>140</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>13</sub></td>
 +
                      <td>Rate constant of double Phosphorylated Fus3's synthesis.</td>
 +
                      <td>260</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>14</sub></td>
 +
                    <td>Rate constant of Fus3's dephosphorylated</td>
 +
                    <td>50</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>15</sub></td>
 +
                      <td>Rate constant of double pp-Fus3's bind with Ste12</td>
 +
                      <td>18</td>
 +
               
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>16</sub></td>
 +
                    <td>Rate constant of double pp-Fus3's unbind with Ste12</td>
 +
                    <td>10</td>
 +
               
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 
 +
 
 +
 
 +
 
 +
<p class="my-content-p">The result of the cascade reaction of MAPK was shown as follow (Fig. 14).</p>
 +
 
 +
    <div class="my-content-box">
 +
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/4/4e/T--BIT-China--2017modeling_pic14.png" />
 +
              <span>Fig. 14 The result of Ste12’s activation under the different concentration of ligand</span>
 +
          </div>
 +
 
 +
<h4 class="title-h4">4. Expression of mRFP:</h4>
 +
 
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">It can be modeled in a set of differential equations:</p>
+
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/8/80/T-BIT-China-2017MODEL-20.png" />
<img class="formula" src="https://static.igem.org/mediawiki/2017/0/04/BIT-China_model-GPCR_formula5.png"/>
+
              <span>Fig. 15 The process of RFP’s expression</span>
</div>
+
            </div>
+
 
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">Rate equations:</p>
+
<p class="my-content-p">Ste12 could accept signal from upstream pathway, it leads to the activation of relevant promoter  <i>P<sub>fus</sub></i>  and expression of downstream gene. There we regarded the expression of RFP as the output. The equations in this process were listed as follow:</p>
<img class="formula" src="https://static.igem.org/mediawiki/2017/4/4c/BIT-China_model-GPCR_formula6.png"/>
+
<img class="formula2" src="https://static.igem.org/mediawiki/2017/f/fa/T--BIT-China--2017formula_pic4.png" alt="">
 
</div>
 
</div>
+
 
 +
 
 +
 
 +
 
 +
<p class="my-content-p"> (The parameters of this part were listed in Table 4)</p>
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 4. The value of parameters in RFP expression</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
                     
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
                      <td>k<sub>17</sub></td>
 +
                      <td>Rate constant of mRFP_mRNA Synthetize</td>
 +
  <td>0.382</td>
 +
                 
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>18</sub></td>
 +
                    <td>Rate constant of mRFP_mRNA Degradation</td>
 +
<td>8.39</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>19</sub></td>
 +
                      <td>Rate constant of nascent RFP synthetize</td>
 +
<td>0.012</td>
 +
                 
 +
                    </tr>
 +
                    <tr>
 +
                    <td>k<sub>20</sub></td>
 +
                    <td>Rate constant of mature mRFP synthetize</td>
 +
<td>0.0012</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                      <td>k<sub>21</sub></td>
 +
                      <td>Rate constant of mature mRFP degradation</td>
 +
<td>0.018</td>
 +
                     
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 
 +
 +
 
 +
 
 +
<h4 class="title-h4">Result </h4>
 +
<p class="my-content-p"> Integrating four models of each block, we obtained completed result about signal transduction in single cell. The result was shown as follow (Fig. 16).</p>
 +
 
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">Gene expression part:</p>
+
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/0/0d/T--BIT-China--2017modeling_pic16.png" />
<img src="https://static.igem.org/mediawiki/2017/9/98/BIT-China_model-GPCR_fig4.png"/>
+
              <span>Fig. 16. The result of RFP intensity under different concentration ligand
</div>
+
Our modeling result exhibited that different concentration of ligand could result in different RFP intensity, which demonstrated that our system could response to the different signal strength specifically. And it also demonstrated that our system could work in a single cell in theory.</span>
 +
        </div>
 +
</div>
  
 +
 +
<div class="cd-section" id="Yeast">
 +
<h3 class="title-h3">Yeast growth model</h3>
 +
<h4 class="title-h4">Purpose</h4>
 +
<p class="my-content-p">After constructing the model of signal transduction in a single cell, we considered to combine single cell model with the growth of yeast to simulate our system’s practical condition. So in this part, we looked forward to construct a simple model to describe the growth of yeast cells and provided some bases to the next step. </p>
 +
<h4 class="title-h4">Method </h4>
 +
<h5 class="title-h5">Practical data measurement</h5>
 +
<p class="my-content-p">We refered the model established by Imperial College 2016. This model was used to describe the growth condition of two kinds of cell which are competitive in a limit culture.  </p>
 +
 +
<p class="my-content-p">We re-proposed some hypotheses to fit our system. </p>
 +
 +
<li class="my-content-li2">1. The condition of cell was divided into two states, activated and non-activated, and there is no conversion between two states. Each state of cell consume the nutrition independently.</li>
 +
<li class="my-content-li2">2. Only the activated state could combine sweetener.</li>
 +
<li class="my-content-li2">3. The nutrition in culture was limited.</li>
 +
<li class="my-content-li2">4. Each group cell had same growth condition.  </li>
 +
 +
<div class="my-content-box">
 +
<p class="my-content-p">Then we set the ODEs as following:</p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/e/ef/T--BIT-China--2017formula_pic5.png" alt="">
 +
</div>
 
 
 +
<p class="my-content-p">(The parameters of this model were listed in Table 5)</p>
 +
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 5. The value of parameter in yeast growth part</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th>Parameter</th>
 +
                      <th>Description</th>
 +
                      <th>Value</th>
 +
               
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
<td>r<sub>1</sub></td>
 +
<td>Rate of non-active yeast growth</td>
 +
<td>1</td>
 +
                        <td></td>
 +
                    </tr>
 +
                    <tr>
 +
                    <td>r<sub>2</sub></td>
 +
                    <td>Rate of active yeast growth</td>
 +
<td>2</td>
 +
                    <td></td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>n<sub>1</sub></td>
 +
                        <td>Culture time for non-active yeast</td>
 +
<td>30</td>
 +
                   
 +
                    </tr>
 +
                    <tr>
 +
                    <td>n<sub>2</sub></td>
 +
                    <td>Culture time for active yeast</td>
 +
<td>30</td>
 +
             
 +
                    </tr>
 +
                    <tr>
 +
                        <td>s<sub>1</sub></td>
 +
                        <td>Rate constant of nutrition consumption for  non-active yeast</td>
 +
<td>0.45</td>
 +
                        <td></td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td>s<sub>2</sub></td>
 +
                        <td>Rate constant of nutrition consumption for  active yeast</td>
 +
<td>2</td>
 +
                        <td></td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 +
<h4 class="title-h4">Result </h4>
 +
<p class="my-content-p">The result of yeast growth model was showed as follow. (Fig. 17)</p>
 +
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">It can be modeled in a set of differential equations:</p>
+
            <img class="formula50" src="https://static.igem.org/mediawiki/2017/9/9d/T-BIT-China-2017MODEL-21.png" />
<img class="formula" src="https://static.igem.org/mediawiki/2017/d/d8/BIT-China_model-GPCR_formula7.png"/>
+
                <span>Fig. 17 The result of yeast cell growth model</span>
</div>
+
        </div>
 +
<h4 class="title-h4">Discussion </h4>
 +
<p class="my-content-p">Analyzing the trend of the curve, it shown that our model can simulate the growth of yeast in some certain condition. And we considered activated cell as effective bio-meter in our project. </p>
 +
</div>
  
 +
 +
 +
 +
<div class="cd-section" id="Combination">
 +
<h3 class="title-h3">Combination Model coupling single cell and yeast growth</h3>
 +
<p class="my-content-p">Based on the above results, we combined these two models together to simulate the performance of whole system in population level. We multiplied the value of Yeast<sub>active</sub> and the value of RFP<sub>mature</sub> directly. </p>
 +
<img class="formula2" style="margin-top: -50px; margin-bottom: -60px" src="https://static.igem.org/mediawiki/2017/8/82/T--BIT-China--2017modeling_pic27.png" alt="">
 +
 +
 +
<p class="my-content-p">And we altered some parameters to fit the experimental data.</p>
 +
 +
<p class="my-content-p">The result of this combined model was shown below (Fig. 18).</p>
 +
 
 
 
<div class="my-content-box">
 
<div class="my-content-box">
<p class="my-content-p">Rate equations</p>
+
            <img class="formula50" src="https://static.igem.org/mediawiki/2017/b/ba/T--BIT-China--2017modeling_pic19.png" />
<img class="formula" src="https://static.igem.org/mediawiki/2017/1/14/BIT-China_model-GPCR_formula8.png"/>
+
            <span>Fig. 18 The simulation result of RFP intensity in population level.</span>
</div>
+
        </div>
<table class="table-co">
+
<h4 class="title-h4">Discussion</h4>
            <caption>This table gives the various parameter values we found in literature:</caption>
+
<p class="my-content-p">Combining two models, we discovered that the RFP intensity is almost the same as base line (value is 0) at the beginning. And after 15 hours, the fluorescence intensity were reflected from single cell level to population level.  because the cells entered into stationary phase. </p>
            <thead>
+
<p class="my-content-p">As for the curve after 22 hours, the RFP intensity starts to decrease slowly in all ligand concentration. It may due to the death of cells.  </p>
            <tr>
+
<p class="my-content-p">We decided to select the RFP intensity at 22 hours as the final output value of sweetness signal based on our model. In order to avoid the cell growth impacts the RFP intensity, we selected this specific moment as the sampling time.  </p>
      <th>Parameter</th>
+
<th>Description</th>
+
<th>Value</th>
+
<th>Unit</th>
+
    </tr>
+
            </thead>
+
            <tbody>
+
            </tbody>
+
        </table>
+
 
</div>
 
</div>
  
<div class="section-upline cd-section" id="PSR">
+
 
<h3 class="title-h3">Primary simulation result</h3>
+
 
 +
<div class="cd-section" id="SWEETENER">
 +
<h3 class="title-h3">SWEETENESS MODEL</h3>
 +
 
 +
 
 +
 
 +
<h4 class="title-h4">Purpose</h4>
 +
<p class="my-content-p">We expected to set a model based on our above model to simulate the RFP intensity of sweetener. Make a comparison between the results of simulation and practical measurement, Our system could not only work like people gustatory sensation system with universality but also is more accurate and less interference than people. </p>
 +
<h4 class="title-h4">Method </h4>
 +
<p class="my-content-p">Although we finished the GPCR model, the combination rate between the sweetener and receptor had not reported or measured yet. So we needed to measure this data from wet lab.</p>
 +
<p class="my-content-p">But because of the instability of our system, we only got a useful group of data. More discussion was established in Project Page. The result was shown (Table 6). Then we utilized these values to optimize our pheromone model.</p>
 +
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 6. The result of sweetness measurement using Sugar Hunter at 16 hours</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th style="width: 50%">Group Name</th>
 +
                      <th>RFP intensity/ unit</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
<td>2%  Sucrose</td>
 +
<td>42.5</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>0%  Sucrose (Control)</td>
 +
<td>27.5</td>
 +
                    </tr>
 +
                 
 +
                </tbody>
 +
            </table>
 +
        </div>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<p class="my-content-p">Analyzing previous methods of sweetness measurement, we made two assumptions for this sweetness model:</p>
 +
<li class="my-content-li2">1. Sweetness of all sweeteners could be transformed into the different concentration of standard sucrose (10% dissolving in water) with the same sweetness.</li>
 +
<li class="my-content-li2">2. The bind between different ligands and GPCR will not impact signal transduction in pheromone pathway.</li>
 +
<p class="my-content-p">Based on these, the most significant work is to find out the RFP intensity corresponding to the standard sucrose.</p>
 +
<p class="my-content-p">Combining the experimental data, we made a simple calculation and got the RFP intensity of standard sweetness amounting to the fluorescence intensity induced by 750nM ideal ligand in our model. </p>
 +
 
 
<div class="my-content-box">
 
<div class="my-content-box">
<img src="https://static.igem.org/mediawiki/2017/2/20/BIT-China_model-GPCR_fig5.png"/>
+
              <img style="width: 50%; height: auto;" src="https://static.igem.org/mediawiki/2017/a/ac/T-BIT-China-2017MODEL-22.png" />
 +
              <span>Fig. 20.  The relationship between sweetness and ideal ligand</span>
 +
        </div>
 +
<div class="my-content-box">
 +
<p class="my-content-p">We set a correction factor K<sub>corret</sub>=750  on calculation result. Then we reset the input according to following equation:</p>
 +
<img class="formula2" src="https://static.igem.org/mediawiki/2017/d/da/T--BIT-China--2017modeling_pic28.png" alt="">
 
</div>
 
</div>
<p class="my-content-p">The result is calculated by our initial model. As we can see, RFP fluorescence intensity will saturate when sweetener’s concentration reaches 2uM. This result is consistent with what we see from the literature.</p>
+
<p class="my-content-p">Then we prefered to predict different sweetness of sweetener. The sweetness data was obtained from previous study<sup>[7]</sup>. (Table 7.) </p>
 +
<div class="my-img-box" style="justify-content: flex-start;">
 +
            <table class="table-co">
 +
                <caption>Table 7. The sweetness of sweetener measured by people taste</caption>
 +
                <thead>
 +
                    <tr>
 +
                      <th style="width: 50%">Sweetener</th>
 +
                      <th>Sweetness</th>
 +
                    </tr>
 +
                </thead>
 +
                    <tbody>
 +
                    <tr>
 +
<td>Sucrose</td>
 +
<td>1</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Aspartame</td>
 +
<td>200</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Stevioside</td>
 +
<td>150</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Sucralose</td>
 +
<td>600</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Glycyrrhizic acid</td>
 +
<td>170</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Acesulfame</td>
 +
<td>200</td>
 +
                    </tr>
 +
                    <tr>
 +
<td>Cyclamate</td>
 +
<td>30</td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
  
<p class="my-content-p">So we transform our system based on this model, the results are as follows;</p>
+
 
 +
 
 +
 +
 +
 +
 +
 +
 +
 +
 
 +
<h4 class="title-h4">Result </h4>
 +
<p class="my-content-p">The result of simulated RFP intensity induced by different sweeteners was shown in Fig. 20.</p>
 
<div class="my-content-box">
 
<div class="my-content-box">
<img src="https://static.igem.org/mediawiki/2017/6/64/BIT-China_model-GPCR_fig6.png"/>
+
              <img class="formula50" src="https://static.igem.org/mediawiki/2017/b/b9/T--BIT-China--2017modeling_pic21.png" />
</div>
+
              <span>Fig. 21.  The modeling result of RFP intensity induced by different sweeteners</span>
<p class="my-content-p">Based on the experimental data and the result of simulation we can see that the concentration of 5-10 uM works best. Our analysis concludes that we have not yet achieved the results of yeast transformation.</p>
+
            </div>
</div>
+
+
<div class="section-upline cd-section" id="Discussion">
+
<h3 class="title-h3">Discussion</h3>
+
  
<p class="my-content-p">It is clear that the results of our initial model and experimental model are different, indicating that our model is not accurate enough. We need to keep working, such as changing the value of certain parameters, rewriting some important equations, so that our model and our experimental can combine perfectly.</p>
+
<h4 class="title-h4">Discussion </h4>
 +
 +
<p class="my-content-p">After 22 hours, the peak of all curve were displayed as the pheromone model. And different sweetness also could induce different fluorescence intensity. But this model still need optimization in further, based on the following aspects:</p>
 +
<li class="my-content-li2">(1) Through molecular simulation to discover the combination constant of sweetener binding process.</li>
 +
<li class="my-content-li2">(2) The correct factor is to be considered the molecular weight, binding sites and combination numbers of the sweetener.</li>
 +
<li class="my-content-li2">(3) Combine the protein expression and cells growth together. Consider the interaction between two models. </li>
 
</div>
 
</div>
  
<div class="section-upline cd-section" id="References">
 
<h3 class="title-h3">References</h3>
 
  
<p class="my-content-p">1.Grant E. DuBois, Molecular mechanism of sweetness sensation, Physiology & Behavior 164 (2016) 453–463.</p>
+
 
<p class="my-content-p">2. Bente Kofahl1 and Edda Klipp2, Modelling the dynamics of the yeast pheromone<
+
<div class="cd-section" id="SUMMARY">
pathway, Published online in Wiley InterScience, Yeast 2004; 21: 831–850.</p>
+
<h3 class="title-h3">SUMMARY</h3>
 +
<p class="my-content-p">Based on our models, we successfully got following results:</p>
 +
<li class="my-content-li2">1. We simulated the structure of T1R2/T1R3 receptor and bound it with different sweeteners to observe the combining situation of different sweeteners through molecular docking. </li>
 +
<li class="my-content-li2">2. We constructed the signal transduction model to simulate pheromone response pathway in two different levels and proved that our system could work as we expected.  </li>
 +
<li class="my-content-li2">3. We also provided an ideal relationship between RFP intensity and sweetness based on the wet lab data and our signal transduction model , which also demonstrated that our system could detect different range of sweetness.
 +
Although sweeteners are various, but we still can taste all of them and sense different sweetness due to the powerful sweetness receptors, T1R2/T1R3. Based on our model, we successfully proved that using sweetness receptor as a “meter” and coupling the signal pathway to determine the sweetness in yeast cell is available. Last, let’s set foot on the trip of beating sweet-monsters in parallel space with our  </li>
 +
 +
 
 +
 +
<p class="my-content-p">Sugar Hunter!!!</p>
 +
 
 +
 +
 
 +
<h4 class="title-h4">References</h4>
 +
<li class="my-content-li2"><span>1.  Dubois G E. Molecular mechanism of sweetness sensation.[J]. Physiology & Behavior, 2016, 164(Pt B):453.</span></li>
 +
<li class="my-content-li2"><span>2. Nie Y, Vigues S, Hobbs J R, et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli.[J]. Current Biology Cb, 2005, 15(21):1948-52.</span></li>
 +
<li class="my-content-li2"><span>3.  Richardson, Kathryn. Mechanisms of GPCR signal regulation in fission yeast[J]. University of Warwick, 2014.</span></li>
 +
<li class="my-content-li2"><span>4. Kofahl B, Klipp E. Modelling the dynamics of the yeast pheromone pathway.[J]. Yeast, 2004, 21(10):831.</span></li>
 +
<li class="my-content-li2"><span>5.  Audet M, Bouvier M. Restructuring G-Protein- Coupled Receptor Activation [J]. Cell, 2012, 151(1):14-23.</span></li>
 +
                    <li class="my-content-li2"><span>6.  Carocho M, Morales P, Icfr F. Sweeteners as food additives in the XXI century: A review of what is known, and what is to come[J]. Food & Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association, 2017, 107.</span></li>
 
</div>
 
</div>
 +
 
<div class="article-nav">
 
<div class="article-nav">
<a href="https://2017.igem.org/Team:BIT-China/Model/Docking" class="article-nav-left">
+
<a href="https://2017.igem.org/Team:BIT-China/Model/Docking" class="article-nav-left2">
<img class="article-caption" src="https://static.igem.org/mediawiki/2017/6/6f/T--BIT-China--2017next.png" alt="">
+
<img class="article-caption" src="https://static.igem.org/mediawiki/2017/a/a4/T--BIT-China--2017previous.png" alt="">
 
</a>
 
</a>
 +
<div style="clear: both;"></div>
 
</div>
 
</div>
 
</section>
 
</section>
  
  
<a class="my-backTop" href="#mytop">
 
      <span>TOP</span>
 
      <img src="https://static.igem.org/mediawiki/2017/f/fd/Bit-china-2017backTop.png" alt="">
 
    </a>
 
 
   
 
 
<nav id="cd-vertical-nav">
 
<nav id="cd-vertical-nav">
<ul>
+
<ul>
<li>
+
<li>
<a href="#Purpose" data-number="1">
+
<a href="#Single" data-number="1">
<span class="cd-dot"></span>
+
<span class="cd-dot"></span>
<span class="cd-label">Purpose</span>
+
<span class="cd-label">Single cell model</span>
</a>
+
</a>
</li>
+
</li>
  
<li>
+
<li>
<a href="#Method" data-number="2">
+
<a href="#Yeast" data-number="2">
<span class="cd-dot"></span>
+
<span class="cd-dot"></span>
<span class="cd-label">Method</span>
+
<span class="cd-label">Yeast growth model</span>
</a>
+
</a>
</li>
+
</li>
 +
<li>
 +
<a href="#Combination" data-number="3">
 +
<span class="cd-dot"></span>
 +
<span class="cd-label">Combination Model coupling single cell and yeast growth</span>
 +
</a>
 +
</li>
  
<li>
+
<li>
<a href="#PSR" data-number="3">
+
<a href="#SWEETENER" data-number="4">
<span class="cd-dot"></span>
+
<span class="cd-dot"></span>
<span class="cd-label">Primary Simulation Result</span>
+
<span class="cd-label">SWEETENER MODEL</span>
</a>
+
</li>
+
 
+
<li>
+
<a href="#Discussion" data-number="4">
+
<span class="cd-dot"></span>
+
<span class="cd-label">Discussion</span>
+
</a>
+
</li>
+
 
+
<li>
+
<a href="#References" data-number="5">
+
<span class="cd-dot"></span>
+
<span class="cd-label">References</span>
+
 
</a>
 
</a>
</li>
+
</li>
  
</ul>
+
<li>
 +
<a href="#SUMMARY" data-number="5">
 +
<span class="cd-dot"></span>
 +
<span class="cd-label">SUMMARY</span>
 +
</a>
 +
</li>
 +
</ul>
 
</nav>
 
</nav>
 
</div>
 
<script src="https://2017.igem.org/Team:BIT-China/src/js/home?action=raw&ctype=text/javascript"></script>
 
  
 +
<a class="my-backTop" href="#mytop">
 +
      <span>TOP</span>
 +
      <img src="https://static.igem.org/mediawiki/2017/f/fd/Bit-china-2017backTop.png" alt="">
 +
    </a>
 
</body>
 
</body>
 
</html>
 
</html>
 
{{BIT-China/footer}}
 
{{BIT-China/footer}}

Latest revision as of 13:50, 1 November 2017

BIT-CHINA

Mating pheromone pathway model

We expected to use mRFP intensity to predict the sweetness based on our system. So we needed an insight into relationship between mRFP and sweetness. But lots of factor can impact the signal output so that we decided to divide our system into two parts, single cell model and yeast growth model.

Single cell model

Purpose

To simulate RFP intensity under different sweetness, we needed to set a model in a single cell firstly. By establishing this model, we could learn about how the sweetness signal transmit in the in yeast coupling pheromone pathway[3], and know each step of the signal transmit in detail, which provides supports for regulating the signal and improving our bio-meter.

Single cell model:

In single cell model, we pay main attention to the signal transduction in pheromone pathway based on[4].And in order to simulate the signal transduction in mathematical way conveniently, we set some hypothesizes of this model:

  • 1. We assumed that T1R2/T1R3 receptor does not have synergistic effect when it binds with sweeteners.
  • 2. We hypothesized that the number of binding sweetener are consistent when binding to T1R2/T1R3 receptor or pheromone receptor.
  • 3. We supposed that the combining rate and the initial binding concentration of sweetener are as same as pheromone receptor’s.
  • 4. There is no influence between cell growth and protein expression in a single cell.
  • 5. Only concern conservation relations of protein concentration in a single cell. The protein involving in the signal transduction is not considers its production or degradation.
  • Method and discussion

    Fig 8. Sweetness testing pathway in Sugar Hunter

    In order to simulate our project systematically, we divided our whole system into four blocks: (a) the activation of T1R2/T1R3 receptor; (b) the activation of G-protein cycle; (c) the cascade reaction of MAPK; and (d) the expression of RFP. And the simulating process and result of each part were shown below.

    1. The activation of T1R2/T1R3 receptor:

    Fig. 9 The mechanism of T1R2/T1R3 receptor’s activation

    In this process, T1R2/T1R3 receptor has four different states. And the receptor transfer between these states under the different sweetener-binding conditions. The equations of this process were shown as follow:

    (T1R2/3: the T1R2-T1R3 receptor. All parameters of this part were listed in Table 1)
    Table 1. The value of parameters in activation of T1R2/T1R3 receptor
    Parameter Description Value
    k1 Rate constant of sweetness binding on receptor 0.0012
    k2 Rate constant of activated receptor 0.6
    k3 Rate constant of downregulated receptor 0.24
    k4 Rate constant of receptor degradation 0.024

    The result of T1R2/T1R3 receptor’s activation was shown below(Fig. 10). It demonstrated that T1R2/T1R3 receptor could respond to different concentration of ligand.

    Fig. 10. The simulating result of receptor’s activation under the different concentration of ligand

    2. The activation of G-protein cycle:

    Fig. 11 The process of G-protein cycle’s activation

    After upstream signal was produced, the activated G exchanges GTP in place of GDP[5]. Then the G and Gβγ dimer are dissociated from receptor and then active downstream pathway. Here, we selected the Gβγ dimer as the output of this part. And the equations of this process were listed as follow:

    (The parameters of this part were listed in Table 2)

    Table 2. The value of parameters in G-protein cycle’s activation
    Parameter Description Value
    k5 Rate constant of Gαβγ's dissociated 0.0036
    k6 Rate constant of Gαβγ's Synthetized 2000
    k7 Rate constant of Gβγ's bind with Ste5 0.1
    k8 Rate constant of Gβγ's unbind with Ste5 5

    The result of G-protein cycle’s activation was shown below (Fig. 12). According to the figure, we indicated that our system could transduce upstream signal accurately.

    Fig. 12. The result of G-protein cycle’s activation under the different concentration of ligand

    The cascade reaction of MAPK:

    Fig. 13 The cascade reaction of MAPK

    All proteins in this part belong to the category of kinase and the signal was transmitted through phosphorylation. Finally, Fus3 activates the expression of Ste12 which was regarded as the output of this part. And all equations in this process were listed as follow:

    (The parameters of this part were listed in Table 3)

    Table 3. The value of parameters in cascade reaction of MAPK
    Parameter Description Value
    k7 Rate constant of Gβγ's bind with Ste5 0.1
    k8 Rate constant of Gβγ's unbind with Ste5 5
    k9 Rate constant of Ste11's Phosphorylated 10
    k10 Rate constant of Ste7's double Phosphorylated 47
    k11 Rate constant of Fus3's double Phosphorylated 345
    k12 Rate constant of double Phosphorylated Fus3's dissociation. 140
    k13 Rate constant of double Phosphorylated Fus3's synthesis. 260
    k14 Rate constant of Fus3's dephosphorylated 50
    k15 Rate constant of double pp-Fus3's bind with Ste12 18
    k16 Rate constant of double pp-Fus3's unbind with Ste12 10

    The result of the cascade reaction of MAPK was shown as follow (Fig. 14).

    Fig. 14 The result of Ste12’s activation under the different concentration of ligand

    4. Expression of mRFP:

    Fig. 15 The process of RFP’s expression

    Ste12 could accept signal from upstream pathway, it leads to the activation of relevant promoter Pfus and expression of downstream gene. There we regarded the expression of RFP as the output. The equations in this process were listed as follow:

    (The parameters of this part were listed in Table 4)

    Table 4. The value of parameters in RFP expression
    Parameter Description Value
    k17 Rate constant of mRFP_mRNA Synthetize 0.382
    k18 Rate constant of mRFP_mRNA Degradation 8.39
    k19 Rate constant of nascent RFP synthetize 0.012
    k20 Rate constant of mature mRFP synthetize 0.0012
    k21 Rate constant of mature mRFP degradation 0.018

    Result

    Integrating four models of each block, we obtained completed result about signal transduction in single cell. The result was shown as follow (Fig. 16).

    Fig. 16. The result of RFP intensity under different concentration ligand Our modeling result exhibited that different concentration of ligand could result in different RFP intensity, which demonstrated that our system could response to the different signal strength specifically. And it also demonstrated that our system could work in a single cell in theory.

    Yeast growth model

    Purpose

    After constructing the model of signal transduction in a single cell, we considered to combine single cell model with the growth of yeast to simulate our system’s practical condition. So in this part, we looked forward to construct a simple model to describe the growth of yeast cells and provided some bases to the next step.

    Method

    Practical data measurement

    We refered the model established by Imperial College 2016. This model was used to describe the growth condition of two kinds of cell which are competitive in a limit culture.

    We re-proposed some hypotheses to fit our system.

  • 1. The condition of cell was divided into two states, activated and non-activated, and there is no conversion between two states. Each state of cell consume the nutrition independently.
  • 2. Only the activated state could combine sweetener.
  • 3. The nutrition in culture was limited.
  • 4. Each group cell had same growth condition.
  • Then we set the ODEs as following:

    (The parameters of this model were listed in Table 5)

    Table 5. The value of parameter in yeast growth part
    Parameter Description Value
    r1 Rate of non-active yeast growth 1
    r2 Rate of active yeast growth 2
    n1 Culture time for non-active yeast 30
    n2 Culture time for active yeast 30
    s1 Rate constant of nutrition consumption for non-active yeast 0.45
    s2 Rate constant of nutrition consumption for active yeast 2

    Result

    The result of yeast growth model was showed as follow. (Fig. 17)

    Fig. 17 The result of yeast cell growth model

    Discussion

    Analyzing the trend of the curve, it shown that our model can simulate the growth of yeast in some certain condition. And we considered activated cell as effective bio-meter in our project.

    Combination Model coupling single cell and yeast growth

    Based on the above results, we combined these two models together to simulate the performance of whole system in population level. We multiplied the value of Yeastactive and the value of RFPmature directly.

    And we altered some parameters to fit the experimental data.

    The result of this combined model was shown below (Fig. 18).

    Fig. 18 The simulation result of RFP intensity in population level.

    Discussion

    Combining two models, we discovered that the RFP intensity is almost the same as base line (value is 0) at the beginning. And after 15 hours, the fluorescence intensity were reflected from single cell level to population level. because the cells entered into stationary phase.

    As for the curve after 22 hours, the RFP intensity starts to decrease slowly in all ligand concentration. It may due to the death of cells.

    We decided to select the RFP intensity at 22 hours as the final output value of sweetness signal based on our model. In order to avoid the cell growth impacts the RFP intensity, we selected this specific moment as the sampling time.

    SWEETENESS MODEL

    Purpose

    We expected to set a model based on our above model to simulate the RFP intensity of sweetener. Make a comparison between the results of simulation and practical measurement, Our system could not only work like people gustatory sensation system with universality but also is more accurate and less interference than people.

    Method

    Although we finished the GPCR model, the combination rate between the sweetener and receptor had not reported or measured yet. So we needed to measure this data from wet lab.

    But because of the instability of our system, we only got a useful group of data. More discussion was established in Project Page. The result was shown (Table 6). Then we utilized these values to optimize our pheromone model.

    Table 6. The result of sweetness measurement using Sugar Hunter at 16 hours
    Group Name RFP intensity/ unit
    2% Sucrose 42.5
    0% Sucrose (Control) 27.5

    Analyzing previous methods of sweetness measurement, we made two assumptions for this sweetness model:

  • 1. Sweetness of all sweeteners could be transformed into the different concentration of standard sucrose (10% dissolving in water) with the same sweetness.
  • 2. The bind between different ligands and GPCR will not impact signal transduction in pheromone pathway.
  • Based on these, the most significant work is to find out the RFP intensity corresponding to the standard sucrose.

    Combining the experimental data, we made a simple calculation and got the RFP intensity of standard sweetness amounting to the fluorescence intensity induced by 750nM ideal ligand in our model.

    Fig. 20. The relationship between sweetness and ideal ligand

    We set a correction factor Kcorret=750 on calculation result. Then we reset the input according to following equation:

    Then we prefered to predict different sweetness of sweetener. The sweetness data was obtained from previous study[7]. (Table 7.)

    Table 7. The sweetness of sweetener measured by people taste
    Sweetener Sweetness
    Sucrose 1
    Aspartame 200
    Stevioside 150
    Sucralose 600
    Glycyrrhizic acid 170
    Acesulfame 200
    Cyclamate 30

    Result

    The result of simulated RFP intensity induced by different sweeteners was shown in Fig. 20.

    Fig. 21. The modeling result of RFP intensity induced by different sweeteners

    Discussion

    After 22 hours, the peak of all curve were displayed as the pheromone model. And different sweetness also could induce different fluorescence intensity. But this model still need optimization in further, based on the following aspects:

  • (1) Through molecular simulation to discover the combination constant of sweetener binding process.
  • (2) The correct factor is to be considered the molecular weight, binding sites and combination numbers of the sweetener.
  • (3) Combine the protein expression and cells growth together. Consider the interaction between two models.
  • SUMMARY

    Based on our models, we successfully got following results:

  • 1. We simulated the structure of T1R2/T1R3 receptor and bound it with different sweeteners to observe the combining situation of different sweeteners through molecular docking.
  • 2. We constructed the signal transduction model to simulate pheromone response pathway in two different levels and proved that our system could work as we expected.
  • 3. We also provided an ideal relationship between RFP intensity and sweetness based on the wet lab data and our signal transduction model , which also demonstrated that our system could detect different range of sweetness. Although sweeteners are various, but we still can taste all of them and sense different sweetness due to the powerful sweetness receptors, T1R2/T1R3. Based on our model, we successfully proved that using sweetness receptor as a “meter” and coupling the signal pathway to determine the sweetness in yeast cell is available. Last, let’s set foot on the trip of beating sweet-monsters in parallel space with our
  • Sugar Hunter!!!

    References

  • 1. Dubois G E. Molecular mechanism of sweetness sensation.[J]. Physiology & Behavior, 2016, 164(Pt B):453.
  • 2. Nie Y, Vigues S, Hobbs J R, et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli.[J]. Current Biology Cb, 2005, 15(21):1948-52.
  • 3. Richardson, Kathryn. Mechanisms of GPCR signal regulation in fission yeast[J]. University of Warwick, 2014.
  • 4. Kofahl B, Klipp E. Modelling the dynamics of the yeast pheromone pathway.[J]. Yeast, 2004, 21(10):831.
  • 5. Audet M, Bouvier M. Restructuring G-Protein- Coupled Receptor Activation [J]. Cell, 2012, 151(1):14-23.
  • 6. Carocho M, Morales P, Icfr F. Sweeteners as food additives in the XXI century: A review of what is known, and what is to come[J]. Food & Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association, 2017, 107.
  • TOP