Difference between revisions of "Team:Stuttgart/Description"

Line 1: Line 1:
 
{{Template:Home}}
 
{{Template:Home}}
 
<html>
 
<html>
 +
  
 
<!-- start of content -->
 
<!-- start of content -->
<h1 align=middle> Description </h1>
+
<h1 align=middle> Protocols & Experiments </h1>
 
<div class="container">
 
<div class="container">
 
     <div class="row section">
 
     <div class="row section">
 
         <div class="col-xs-12 col-sm-12 col-md-12">
 
         <div class="col-xs-12 col-sm-12 col-md-12">
             <h3>What's the problem?</h3>
+
             <h3>Preparation of chemically competent DH5alpha <i>E. coli</i> cells</h3>
             <p>Our project deals with an everyday problem described by the following scenario:
+
             <h4>Material:</h4>
You want to enjoy a refreshing shower in the morning, but your hairy roommate clogged the drain again?
+
<p><ul><li>LB media</li>
You would like to have a relaxed bubble bath after a long day, but there are bad odors coming out of the pipe system?
+
<li>TSS buffer </li>
<br>
+
<li>DH5alpha <i>E. coli</i> cells (o/n colonies on agar plates)</li></ul></p>
<br>
+
<h4>Method:</h4>
The general practice now:
+
<p><ol><li>Pick one colony of the plate and transfer into 5 mL of LB media. Grow the culture over night for 16-18 hours at 37°C </li>
<ul><li>You try the ‘hot water method’ to flush the drain…  nothing happens.</li>
+
<li>Transfer 1 mL of the overnight culture into a shaking flask with 99 mL of LB media. Measure optical density (OD) at 600 nm and incubate culture at 37°C (shaking) to an OD of 0,5. </li>
<li>You remember what your mother taught you, so you put a fancy mix of vinegar, baking soda and some magic into the drain… a mysterious creature arises, but nothing else happens.</li>
+
<li>Divide the 100 mL into two 50 mL tubes and incubate 10 min on ice. </li>
<li>In the end there is just one thing left – you put the nasty chemical mixture of the stinky cleaning agent down the drain. The corrosive cloud disappears and you can finally take your shower… still trying not to breath in the acrid fumes.</li></ul>
+
<li>Spin the tubes at 3000 rpm for 10 minutes at 4°C </li>
</p>
+
<li>Resuspend the pellet of competent cells with 10 % TSS buffer (5 mL). </li>
 +
<li>Aliquot 100 µL of the cell solution into 1.5 mL microtubes (all steps on ice!). </li>
 +
<li>Store the competent cells at -80°C</li>  </ol></p>  
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
+
        <div class="row section">
<div class="row section">
+
            <div class="col-xs-12 col-sm-12 col-md-12">
        <div class="thumb tleft">
+
                <h3>Heat-shock Transformation of <i>E. coli</i> cells</h3>
        <div class="thumbinner" style="width:1110px;">
+
                <h4>Material:</h4>
        <a href="https://static.igem.org/mediawiki/2017/0/0b/Comicstuttgart.png" class="image">
+
    <p><ul><li>SOC media </li>
        <img alt="" src="https://static.igem.org/mediawiki/2017/0/0b/Comicstuttgart.png" width="1100" height="450" class="thumbimage" />
+
<li>Agar plates with appropriate antibiotic</li></ul></p>
        </a>
+
    <h4>Method:</h4>
        <div class="thumbcaption">
+
    <p><ol><li>Thaw chemically competent cells on ice. </li>
        <div class="magnify">
+
<li>Transfer 50 µL of the cells into a 1.5 mL microtube, add 1 µL of the desired DNA and incubate on ice for 30 minutes.  </li>
        <a href="https://static.igem.org/mediawiki/2017/0/0b/Comicstuttgart.png" class="internal" title="Enlarge">
+
<li>Place the tube in a 42 deg°C water bath for 60 seconds. </li>
          <img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" />
+
<li>After heat shock leave cells on ice for 5 minutes. </li>
        </a>
+
<li>Add 950 µL of SOC media and shake cells for 2 hours at 37°C</li>
        </div>
+
<li>Pipet 100 µL of the cells onto an appropriate plate and spread them using sterile glass beads.
        <b></b>  
+
  Incubate overnight at 37 deg. Celsius and hope for colonies in the morning to prove a successful transformation. </li></ol>
        </div>
+
</p>   
        </div>
+
              </div>
        </div>
+
            </div>
        </div>
+
            <div class="row section">
 +
                <div class="col-xs-12 col-sm-12 col-md-12">
 +
                    <h3>Preparation of LB media</h3>
 +
                    <h4>Material:</h4>
 +
            <p><ul><li>Tryptone</li>
 +
            <li>NaCl</li>
 +
            <li>Yeast extract</li></ul></p>
 +
            <h4>Method:</h4>
 +
            <p><ol><li>Fill a container (bottle) to about 60/70 % its volume with destilled water. </li>
 +
<li>Add 10 g/L Tryptone, 10 g/L NaCl and 5 g/L of yeast extract. </li>
 +
<li>Stir properly and fill up the remaining volume with distilled water. </li>
 +
<li>Treat LB media by autoclave. </li></ol>
 +
            </p>   
 +
                  </div>
 +
                </div>
 +
                <div class="row section">
 +
                    <div class="col-xs-12 col-sm-12 col-md-12">
 +
                        <h3>Preparation of LB agar</h3>
 +
                        <h4>Material:</h4>
 +
                <p><ul><li>Tryptone</li>
 +
<li>NaCl</li>
 +
<li>Yeast extract</li>
 +
<li>Agar</li></ul></p>
 +
                <h4>Method:</h4>
 +
                <p><ol><li>Fill a container (bottle) to about 60/70 % its volume with destilled water. </li>
 +
<li>Add 10 g/L Tryptone, 10 g/L NaCl, 5 g/L of yeast extract and 20 g/L agar. </li>
 +
<li>Stir properly and fill up the remaining volume with distilled water. </li>
 +
<li>Treat by autoclave. </li></ol>
 +
                </p>   
 +
                      </div>
 +
                    </div>
 +
                    <div class="row section">
 +
                        <div class="col-xs-12 col-sm-12 col-md-12">
 +
                            <h3>Preparation of M9 media</h3>
 +
                            <h4>Salt solution:</h4>
 +
                    <p><ul><li>3 g Na<sub>2</sub>HPO<sub>4</sub>  </li>
 +
                    <li> 1,5 g KH<sub>2</sub>PO<sub>4</sub></li>
 +
                    <li>0,5 g NH<sub>4</sub>Cl</li>
 +
                    <li>0,25 g NaCl</li>
 +
                    <li>1 mL MgSO<sub>4</sub></li>
 +
                    <li>50 µL CaCl<sub>2</sub></li></ul></p>
 +
                    <h4>Sugar solution:</h4>
 +
            <p><ul><li>20 g/LGlycerol</li>
 +
            <li>5 g/L Yeast </li>
 +
            <li>10 mg Thiamine</li>
 +
            <li>1 mL Micronutrients</li></ul></p>
 +
            <br>
 +
                    <div class="row section">
 +
                        <div class="col-xs-12 col-sm-12 col-md-12">
 +
                            <h3>Glycerol stocks – storage of bacterial strains</h3>
 +
                            <h4>Material:</h4>
 +
                    <p><ul><li>Glycerol</li></ul></p>
 +
                    <h4>Method:</h4>
 +
                    <p><ol><li>Mix 700 µL of overnight culture with 300 µL glycerol. </li>
 +
                    <li>Store at -80°C</li></ol>
 +
                    </p>   
 +
                          </div>
 +
                        </div>
 +
                        <div class="row section">
 +
                            <div class="col-xs-12 col-sm-12 col-md-12">
 +
                                <h3>Polymerase chain reaction (PCR)</h3>
 +
                                <h4>Material:</h4>
 +
                        <p><ul><li>Primer forward & reverse</li>
 +
                              <li>Template DNA</li>
 +
                              <li>NEB Q5® High-Fidelity 2X Master Mix (dNTPs + Polymerase)</li>
 +
                              <li>Distilled water</li>
 +
                              <li>PCR-Cycler</li></ul></p>
 +
                        <h4>Method:</h4>
 +
                        <p><ol><li>All steps have to be performed on ice.</li>
 +
                              <li>50 µL approach (mix well):</li></ol>
 +
                        </p>   
 +
                            <table align=middle hspace=10>
 +
                            <tr><th>Components</th><th>Volume</th><th>Concentration</th> </tr>
 +
                            <tr> <td>Q5 Master Mix</td> <td>25 µL</td> <td>1x</td> </tr>
 +
                            <tr> <td> 10 µM fw primer</td> <td>2,5 µL</td> <td>0,5 µM</td></tr>
 +
                            <tr> <td> 10 µM rv primer</td> <td> 2,5 µL </td> <td>0,5 µM</td> </tr>
 +
                            <tr> <td> Template DNA</td> <td></td> <td><1000 ng</td> </tr>
 +
                            <tr> <td> Water</td> <td>remaining volume to 50 µL</td><td></td></tr>
 +
                            </table>
 +
                            <br>
 +
                            <p>PCR-cycler conditions:</p>
 +
                            <table align=middle hspace=10>
 +
                            <tr> <th>Step</th> <th>Cycles</th><th>Temperature</th> <th>Time</th></tr>
 +
                            <tr><td>Denaturation</td><td>1</td><td>98°C</td><td>30 sec</td></tr>
 +
                            <tr><td>Annealing</td><td>25-35</td><td>98°C</td><td>5-10 sec</td></tr>
 +
                            <tr><td>Elongation</td><td></td><td>72°C</td><td>20-30sec/kb</td></tr>
 +
                            <tr><td>Final extension</td><td>1</td><td>72°C</td><td>2 min</td></tr>
 +
                            <tr><td>Hold</td><td></td><td>4-10°C</td><td></td></tr>
 +
                            </table>
 +
                          </div>
 +
                        </div>
 +
                        <div class="row section">
 +
                            <div class="col-xs-12 col-sm-12 col-md-12">
 +
                                <h3>Determination of DNA concentration</h3>
 +
                                <p><ul><li>DNA concentration is determined by using a Nanodrop ()</li>
 +
                              <li>The absorbance at 260 nm is converted to concentration using the Lambert – Beer Equation by the program </li>
 +
                              <li>The purity of the sample is confirmed by the 260/280 ratio (contamination with proteins) and the 260/230 ratio (presence of co-purified contaminants)</li>
 +
                              <li>For pure DNA the 260/280 ratio should be around 1.8 and the 260/280 ratio should be around 1.8 – 2.2. (ND-1000-v3.4-users-manual, Thermo Scientific) </li></ul>
 +
                        </p>   
 +
                              </div>
 +
                            </div> 
 +
                            <div class="row section">
 +
                                <div class="col-xs-12 col-sm-12 col-md-12">
 +
                                    <h3>Mini-Prep (based on Fast-n-Easy Plasmid Mini-Prep Kit Jena Bioscience)</h3>
 +
                                    <h4>Material:</h4>
 +
                            <p><ul><li>Lysis buffer</li>
 +
                                  <li>Neutralization buffer</li>
 +
                                  <li>Column-Activation buffer</li>
 +
                                  <li>Wash buffer</li>
 +
                                  <li>Elution buffer</li>
 +
                                  <li>Binding column</li></ul></p>
 +
                            <h4>Method:</h4>
 +
                            <p><ol><li>Harvest the over-night culture by centrifugation (3000 g for 10 minutes.)</li>
 +
<li>Activate the Binding Column by adding 100 µl of Activation buffer and centrifugation at 10000 g for 30 seconds. </li>
 +
<li>For cell lysis resuspend the cell pellet in 300 µl Lysis buffer (pipetting or vortexing).</li>
 +
<li>Add 300 µl of Neutralization buffer and mix by inverting the tube (4 – 6 times).</li>
 +
<li>Centrifuge at 10000 g for 5 minutes.</li>
 +
The colour of the supernatant should be yellow.</li>
 +
<li>Transfer the supernatant into the Binding Column and centrifuge at 10000 g for 30 seconds. Discard the flow-through.</li>
 +
<li>Add 500 µl Washing buffer to the column and centrifuge at 10000 g for 30 seconds. Discard the flow-through.</li>
 +
<li>Place the Binding Column into a clean microtube an add 30 µl Elution buffer.</li>
 +
<li>Incubate for 1 minute and centrifuge at 10000 g for 1 minute to elute DNA.</li>
 +
<li>The eluted DNA could be used directly or should be stored at -20°C.</li> </ol></p>
 +
</div>
 +
</div>
 
<div class="row section">
 
<div class="row section">
 
     <div class="col-xs-12 col-sm-12 col-md-12">
 
     <div class="col-xs-12 col-sm-12 col-md-12">
      <p>Pipe clogging and closure occurs in every household as well as in industry.
+
         <h3>Restriction digest</h3>
         Various components contribute to the pipe closure, such as fat and hair.
+
         <h4>Material:</h4>
        Commercial chemical pipe cleaners contain aggressive substances, which are harmful to the environment and health and also can lead to pipe breaks.
+
<p><ul><li>Plasmid DNA</li>
        Biological alternatives (purified enzymes) have been researched for years, without reaching the efficiency of chemical cleaners.
+
<li>Restriction Enzymes</li>
        In addition, the purification of the enzymes is very complex and cost intensive. </p>
+
<li>Restriction buffer</li>
<h3>Our solution</h3>
+
<li>H2O</li>
      <p>We pursue a system-biological solution which is based on an intact microbial system.
+
<li>Ice</li></ul></p>
         Inspired by different interesting projects we decided to develope a keranolytic <i>Escherichia coli</i>.
+
<h4>Method:</h4>
        The projects of past iGEM-teams were part of our investigation too and we are already co-working with iGEM-team OLS_Canmore 2015/2016 to exchange information.
+
<p><ol><li>All steps must be performed on ice.</li>
        We would like to use the knowledge of these groundworks to develop a new type of enzymatic cleaning agent by complementing and combining ideas out of different scientific sources.
+
<li>For a 20 µl double digest approach following amount are needed:</li>
        To differ from other projects we are aiming to engineer <i>Escherichia coli</i> to express enzymes like esterases, lipases and keratinases into the medium.
+
        Due to the extracellular expression expensive and time-consuming purification steps could be avoided and the enzymes could be secreted directly into the drain.As a special feature we want to use the metabolites of the enzymatic degradation to produce a lovely rose-scent to refresh your whole room.
+
        In addition this reaction could also be used to indicate that the enzymes are working efficiently on your drainage problem.
+
      </p>
+
        </div>
+
    </div>
+
    <div class="row section"> 
+
      <div class="col-xs-12 col-sm-12 col-md-12">   
+
      <h2 align=middle>Light up the pipe - 3 parts for a better flow</h2>
+
<h3>Part 1 - Esterases and Lipases</h3>
+
</div>
+
</div>
+
  <div class="row section">
+
        <div class="col-xs-12 col-sm-4 col-md-4">
+
            <!--<https://static.igem.org/mediawiki/2017/b/bc/Esteraseallein.png">-->
+
            <img src="https://static.igem.org/mediawiki/2017/b/bc/Esteraseallein.png" class="img-responsive"/>
+
        </div>
+
        <div class="col-xs-12 col-sm-8 col-md-8">
+
          <p>Hair is surrounded by a layer of grease and waxes which first need to be removed to make the hair-keratin available for keratinases.
+
            For the first degradation step we choose a combination of  esterases and lipases.
+
            Lipases and esterases are lipolytic enzymes that are used in food processing, beverages, therapeutics and degradation of synthetic materials (Panda und Gowrishankar 2005).
+
            Lipases (EC. 3.1.1.3) and esterases (EC. 3.1.1.1) are hydrolases that catalyze the hydrolysis (and synthesis) of triacylglycerols into acid and alcohol molecules.
+
            They differ mainly on the basis of substrate specifity and activation mechanism.
+
            Lipases hydrolase triacylglyderols with longer fatty acid chains than esterases and lipases have a hydrophobic domain covering their active site.
+
            Therefore lipases need to be activated with organic solvents to make the active site accessible for substrates.
+
            Esterases and lipases are classified into 8 groups on the basis of the conserved sequence motifs and biological properties.
+
            EstCS2 belongs to class VII (Kang et al. 2011; Shamsher Singh Kanwar).
+
</p>
+
</div>
+
</div>
+
<div class="row section">
+
      <div class="col-xs-12 col-sm-12 col-md-12">
+
      <p>We investigated two different esterases for their enzyme activity.
+
          One esterase from the registry (EstCS2 BBa_K1149002) and one esterase (LipB) supplied by Dr. Eggert from Evoxx were compared.
+
          Additionally, we choose the lipase TliA to support the esterases at the fat degradation and to accelerate the entire degradation process.
+
          For the extracellular secretion of the enzymes we attached the signal sequence PelB which was provided on the iGEM plates.
+
</p>
+
</div>
+
</div>
+
<div class="row section">
+
      <div class="col-xs-12 col-sm-12 col-md-12">
+
<h4>Esterases EstCS2 and LipB</h4>
+
    <p>EstCS2 from the iGEM Imperial College 2013 was proved to be active.
+
      In their project the cells expressing this construct were grown and lysed by sonication and were utilized in a colourimetric assay with the substrate analog para-Nitrophenyl butyrate.
+
      In our project we didn’t purify the esterases but used the supernatant for the enzyme activity assay.
+
      Furthermore, we investigated the enzyme activity of LipB.
+
      We performed the enzyme assay from the iGEM Team TU Darmstadt that we also used for EstCS2.
+
      Afterwards we attached the PelB signal sequence for the extracellular secretion of the enzyme.
+
</p>
+
</div>
+
</div>
+
<div class="row section">
+
      <div class="col-xs-12 col-sm-9 col-md-9">
+
        <br>
+
        <p>
+
        <u>General properties of EstCS2: (Kang et al. 2011)</u>
+
        <ul>
+
          <li>serine esterase with 45 % similarity with the carboxylesterase from Haliangium ochraceum DSM 14365</li>
+
          <li>temperature optimum: 55 °C; at 37°C: ca. 50 % of maximal activity </li>
+
          <li>pH optimum: 9; at pH 7: ca. 30 % of maximal activity </li>
+
            <li>Family VII esterase with the Ser residue in the catalytic triad of EstCS2 that is loacated in the consensus active site motif GXSXG </li>
+
          </ul>
+
        </p>
+
      </div>
+
        <div class="col-xs-12 col-sm-3 col-md-3">     
+
        <div class="thumb tleft">
+
        <div class="thumbinner" style="width:230px;">
+
        <a href="https://static.igem.org/mediawiki/2017/4/4d/Catisvektro3.png" class="image">
+
      <img alt="" src="https://static.igem.org/mediawiki/2017/4/4d/Catisvektro3.png" width="210" height="240" class="thumbimage" />
+
      </a> 
+
      <div class="thumbcaption">
+
      <div class="magnify">
+
        <a href="https://static.igem.org/mediawiki/2017/4/4d/Catisvektro3.png" class="internal" title="Enlarge">
+
          <img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" />
+
</a>
+
</div>
+
  <b>Figure 1:</b> BBa_K1149002 - EstCS2.
+
</div>
+
    </div>
+
</div>
+
</div>
+
</div>
+
 
+
 
+
<div class="row section">
+
      <div class="col-xs-12 col-sm-9 col-md-9">
+
        <p>
+
        <u>General properties of LipB: (Eggert et al. 2000)</u>
+
        <ul>
+
          <li>organism: Bacillus subtilis 168</li>
+
          <li>temperature optimum:</li>
+
          <li>pH optimum: 6 - 8</li>
+
            <li>substrate specifity: preferentially hydrolysed esters of fatty acids with short chain lengths with less than 10 carbon atoms</li>
+
            <li>triolein wasn’t hydroliysed at all: LipB is clasified as an esterase not as a lipase</li>
+
            <li>classification of this enzyme as a phospholipase (EC 3.1.4.3) </li>
+
          </ul>
+
        </p>
+
      </div>
+
        <div class="col-xs-12 col-sm-3 col-md-3">     
+
        <div class="thumb tleft">
+
        <div class="thumbinner" style="width:230px;">
+
        <a href="https://static.igem.org/mediawiki/2017/f/f0/Catisvektrz4.png" class="image">
+
      <img alt="" src="https://static.igem.org/mediawiki/2017/f/f0/Catisvektrz4.png" width="210" height="190" class="thumbimage" />
+
      </a> 
+
      <div class="thumbcaption">
+
      <div class="magnify">
+
        <a href="https://static.igem.org/mediawiki/2017/f/f0/Catisvektrz4.png" class="internal" title="Enlarge">
+
          <img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" />
+
</a>
+
</div>
+
  <b>Figure 1:</b> Pet19-LipB.
+
</div>
+
    </div>
+
</div>
+
</div>
+
</div>
+
<div class="row section">
+
      <div class="col-xs-12 col-sm-12 col-md-12">
+
    <h4>Lipase TliA</h4>
+
  </div>
+
</div>
+
<div class="row section">
+
      <div class="col-xs-12 col-sm-9 col-md-9">
+
    <p>TThe TliA lipase was synthesized from IDT.
+
        Eom et al. have already shown extracellular activity of TliA when secreted with the ABC export system.
+
        So, if the TliA lipase is expressed, it is exported out of the cell and degrades the greasy layer surrounding the hair, which makes the keratin accessible for the keratinases.
+
</p>
+
 
<br>
 
<br>
<p>
+
<table> <tr> <th>Components</th> <th>Volume</th><th>Concentration</th> </tr>
        <u>General properties of TliA: (Eom et al. 2014)</u>
+
<tr><td>Restriction buffer (10X)</td><td>2 µL</td><td>1X</td></tr>
        <ul>
+
<tr><td>Restriction enzyme 1</td><td>1 µL</td><td> </td></tr>
          <li>organism: Pseudomonas fluorescens</li>
+
<tr><td>Restriction enzyme 2</td><td>1 µL</td><td></td></tr>
          <li>thermostable lipase that is secreted by the ABC export system from Dickeya dadantii with the LARD secretion tag</li>
+
<tr><td>Plasmid DNA</td><td>x µL</td><td>1 µg total</td></tr>
        </ul>
+
<tr><td>H2O</td><td>add to 20 µL</td><td></td></tr>
        </p>
+
</table>
      </div>
+
<br>
      <div class="col-xs-12 col-sm-3 col-md-3">    
+
<li>Digest the approach for 1h at 37 °C.</li>
      <div class="thumb tleft">
+
<li>To stop the reaction, incubate the reaction for 20 minutes at 80 °C.</li></ol>
      <div class="thumbinner" style="width:230px;">
+
      <a href="https://static.igem.org/mediawiki/2017/1/13/Catisvektorlipase3.png" class="image">
+
    <img alt="" src="https://static.igem.org/mediawiki/2017/1/13/Catisvektorlipase3.png" width="210" height="180" class="thumbimage" />
+
    </a>
+
    <div class="thumbcaption">
+
    <div class="magnify">
+
      <a href="https://static.igem.org/mediawiki/2017/1/13/Catisvektorlipase3.png" class="internal" title="Enlarge">
+
        <img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" />
+
</a>
+
 
</div>
 
</div>
  <b>Figure 1:</b> TliA Lipase.
 
 
</div>
 
</div>
  </div>
+
<div class="row section">
</div>
+
    <div class="col-xs-12 col-sm-12 col-md-12">
</div>
+
        <h3>Gel-Extraction (based on Gel DNA Recovery Kit from Zymo Research)</h3>
</div>
+
        <h4>Material:</h4>
    <div class="row section">  
+
<p><ul><li>Extraction buffer (ADB buffer)</li>
      <div class="col-xs-12 col-sm-12 col-md-12">
+
<li>Washing buffer</li>
<h3>Part 2 - Keratinases</h3>
+
<li>Elution buffer</li>
</div>
+
<li>Spin column</li></ul></p>
</div>
+
<h4>Method:</h4>
    <div class="row section">
+
<p><ol><li>Cut out the area of the gel containing the DNA fragment of interest. </li>
    <div class="col-xs-12 col-sm-8 col-md-8">
+
<li>Add ADB buffer (3 volumes to 1 volume gel).</li>
        <p>Keratinases are  promising enzymes that find their applicability in agro-industrial, pharmaceutical and biomedicals fields.
+
<li>Dissolve the gel by incubation at 37 – 55 °C for 5 – 10 minutes.</li>
          We want to profit from them by applying them on clugged pipes full of hair that is a common issue in lots of households.  
+
<li>Transfer the solution to a spin column and centrifuge for 30 seconds. Discard the flow-through.</li>
          Keratinases are enzymes that are capable of degrading hair.  
+
<li>Add 200 µl Washing buffer and centrifuge for 30 seconds. Discard the flow-through.</li>
          Hair mostly consists of alpha-Keratin. Many different keratinases produced by different Bacilli, Actinobacteria and fungi have been reported.  
+
<li>Repeat the wash step.</li>
          All of them vary by having their specific biochemical and biophysical properties e.g. temperature and pH activity range.  
+
<li>Place the column in a clean microtube and add more than 6 µl Elution buffer. Centrifuge for 1 minute to elute DNA.</li></ol>
          Using their proteolytic capability that destroys hair we want to use them to avoid chemical compounds that are recently mainly applied to cleanse tubes.  
+
          By hydrolization of disulfide bonds keratin degrades. This is due to confirmation changes which leads to an exposure of more sites for keratinase action (Satyanarayana et al. 2013, Vignardes et al. 1999). Previous projects from iGEM Teams such as Sheffield 2014, Team Canmore 2015 and Team Canmore 2016 helped us to tackle this problem as they were regarding similar problems.  
+
 
</p>
 
</p>
 
</div>
 
</div>
<div class="col-xs-12 col-sm-4 col-md-4">
 
    <!--<https://static.igem.org/mediawiki/2017/c/c3/KeratinaseCOMIC.png">-->
 
    <img src="https://static.igem.org/mediawiki/2017/c/c3/KeratinaseCOMIC.png" class="img-responsive"/>
 
 
</div>
 
</div>
</div>
+
<div class="row section">
<div class="row section">  
+
    <div class="col-xs-12 col-sm-12 col-md-12">
<div class="col-xs-12 col-sm-12 col-md-12">
+
        <h3>Enzyme activity assay of the esterases EstCS2 (BBa_K1149002) and LipB
<p>Still there are a lots of things that have to be improved as these Teams were facing different issues.
+
</h3>
The Team of Sheffield stumbled over the problem that the keratinase colonies were either not producing or exporting the protein in a functional form. While Canmore accomplished to succeed to show a certain Keratinase activity, due to time limitation they were not able to show quanititative but qualititative observations of keratine degredation.
+
Based on these already promising results we want to focus on improving the keratinases using different promotors that regulate a successful protein secretations without being toxic to the host organism.
+
For efficient hair degradation we chose different keratinases such as KerUS and KerA that orginate from the host organisms Bacillus Subtilis and Bacillus Licheniformis and KerP from Pseudomonas aeruginosa). Moreover we wanted to combine these keratinases with promoters of different strenghts (BBa_K206000, BBa_J23115, BBa_J23119).We aimed to chose promotors with different strength for different transcription levels of the keratinase genes. Strong promotors have a higher alignment to the consensus sequence than weaker promotors. This means, the stronger the accordance of the promotor to the consensus sequence, the stronger binds the RNA polymerase on the promotor which leads to higher gene transcription (Yamaguchi et al. 2013). Additionaly we wanted to compare two different signal sequences (PelB and OmpA) that provide for extracellular transport of the keratinases.
+
</p>
+
 
<br>
 
<br>
<h4>KerP</h4>
+
        <p>To determine the enzyme activity of EstCS2 and LipB a photometric assay was prepared. Two wildtypes were compared with the enzyme activity of the esterases. The results were obtained from biological triplicates.  
<p>Keratinase kerP is a 33 kDa monomeric protein. Ker P is a serine protease. Serine proteases are protelytic enzymes, charaterizised by a reactive serine side chain (Kraut 1977). The family contains many diffrent enzymes with wide spread functions. Most of keratinases are serine proteases capable to degrade recalcitrant protein like nails, hair, feathers (Sharma and Gupta 2010b). KS-1 has his optimal activity at pH = 9 and 60 C.  
+
 
</p>
 
</p>
 
</div>
 
</div>
 
</div>
 
</div>
<div class="row section">
+
<div class="row section">
  <div class="col-xs-12 col-sm-12 col-md-12">
+
<h3>Part 3 - a lovely scent of...</h3>
+
</div>
+
</div>
+
    <div class="row section">
+
 
<div class="col-xs-12 col-sm-12 col-md-12">
 
<div class="col-xs-12 col-sm-12 col-md-12">
  <p>The microbial synthesis of natural flavor compounds has become a very attractive alternative to the chemical production (D. Guo and L. Zhang et al 2017).
+
<h4>Principle</h4>
    In recent years microorganisms such as <i>E.coli</i> and Yeast have been metabolically engineered to produce different flavors like limonene, geraniol or rose (D. Guo and L. Zhang et al 2017, W. Liu and R. Zhang et al. 2015, I. Guterman and M. Shalit et al. 2002).
+
    For our project we discussed different approaches and choose two different scents: rose and limonene.
+
  </p>
+
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="row section">
 
<div class="row section">
  <div class="col-xs-12 col-sm-12 col-md-12">
+
<div class="col-xs-12 col-sm-7 col-md-7">     
<h4>... rose fragrance</h4>
+
</div>
+
</div>
+
<div class="row section">
+
  <div class="col-xs-12 col-sm-4 col-md-4">
+
      <!--<https://static.igem.org/mediawiki/2017/e/e0/Rosnduftcomic.png>-->
+
      <img src="https://static.igem.org/mediawiki/2017/e/e0/Rosnduftcomic.png" class="img-responsive"/ align=middle>
+
  </div>
+
  <div class="col-xs-12 col-sm-8 col-md-8">
+
      <p>As first special fragrance we want to install a lovely scent of rose in our microbial system. Hair are commonly made of Keratin (98%) and small amounts of amino acids, such as L-phenylalanine.
+
        This amino acid can be used as substrate for the production of 2-Phenylethylacetate (2-PEAc), which is a high-value aromatic ester with a rose-like odor (D. Guo and L. Zhang et al. 2017).
+
        Therefor this odor can act as an indicator for keratin degradation. 2-PEAc is in high demand and widely udes as an additive in food, drinks, perfumes and cosmetics (D. Guo and L. Zhang et al.).
+
        Currently, 2-PEAc is mainly produced by chemical synthesis, but consumers prefer more natural flavour compounds in the field of food and cosmetics.
+
        But extraction of natural 2-PEAc is cost and time-intensive (D. Guo and L. Zhang et al. 2017).
+
        Therefor the production of 2-PEAc using microorgansims such as <i>E.coli</i> can be an attractive alternative (D. Guo and L. Zhang et al. 2017).
+
        In recent studies from Guo et al the 2-PEAc biosynthetic pathway was successfully designed and expressed in <i>E.coli </i>.
+
        For our project we want to use this pathway for the production of a lovely rose scent by <i>E.coli</i>.
+
        This pathway comprise four steps (Fig.1) (D. Guo and L. Zhang et al. 2017):</p>
+
</div>
+
</div>
+
 
+
<div class="row section"> 
+
  <div class="col-xs-12 col-sm-5 col-md-5">     
+
<ul>
+
<li> Aminotransferase (ARO 8) for transamination of L-phenylalanine to phenylpyruvate</li>
+
<li> 2-keto acid decarboxylase KDC for the decarboxylation of the phenylpyruvate to phenylacetaldehyde</li>
+
<li> Aldehyde reductase YjgB for the reduction of phenylacetaldehyde to 2-Phenylethanol</li>
+
<li> Alcohol acetyltransferase ATF1 for the esterification of 2-PE to 2-PEAc.</li></ul>
+
</p>
+
</div> 
+
    <div class="col-xs-12 col-sm-7 col-md-7">
+
<div class="thumb tleft">
+
  <div class="thumbinner" style="width:622px;">
+
     <a href="https://static.igem.org/mediawiki/2017/7/7a/Stuttgartpathwayrose.png" class="image">
+
      <img alt="" src="https://static.igem.org/mediawiki/2017/7/7a/Stuttgartpathwayrose.png" width="600" height="200" class="thumbimage" />
+
    </a> 
+
    <div class="thumbcaption">
+
      <div class="magnify">
+
        <a href="https://static.igem.org/mediawiki/2017/7/7a/Stuttgartpathwayrose.png" class="internal" title="Enlarge">
+
          <img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" />
+
</a>
+
</div>
+
  <b>Figure 1:</b>  Rose fragrance pathway from Gup et al. (D. Guo and L. Zhang et al. 2017).
+
    </div>
+
</div>
+
</div>
+
</div>
+
</div>
+
<div class="row section">
+
<div class="col-xs-12 col-sm-12 col-md-12">
+
  <p>We contacted the scientists Guo et al. and they send us two plasmids with rose genes: pET28a-KDC-YjgB-ARO8 and pET28a-ATF1. </p>
+
</div>
+
</div>
+
 
+
 
+
<div class="row section">
+
  <div class="col-xs-12 col-sm-12 col-md-12"> 
+
<h4>... limonene fragrance</h4>
+
</div>
+
</div>
+
<div class="row section">
+
<div class="col-xs-12 col-sm-5 col-md-5">         
+
<p>Limonene is a well-known cyclic monoterpene which can occur in two optical forms (E. Jongedijk and K. Cankar et. al 2016).
+
  (D)-Limonene is one of the most important and widespread terpenes in the flavor and fragrance industry, for example in citrus-flavored products such as soft drinks and candy (2). The (L)-Limonene form has a more harsh fir-like odor with a lemon-note (2). For our project we choose an enzyme-cascade, beginning with acetyl-coA and leading to the product (L)-limonene. This biosynthetic pathway was designed and inserted in <i>E.coli </i>(Fig.2).
+
</p>
+
</div>
+
<div class="col-xs-12 col-sm-7 col-md-7">
+
 
<div class="thumb tleft">
 
<div class="thumb tleft">
<div class="thumbinner" style="width:622px;">
+
<div class="thumbinner" style="width:730px;">
<a href="https://static.igem.org/mediawiki/2017/8/8a/Limonenepathway.png" class="image">
+
<a href="https://static.igem.org/mediawiki/2017/f/f1/Esterase_Formel.png" class="image">
  <img alt="" src="https://static.igem.org/mediawiki/2017/8/8a/Limonenepathway.png" width="600" height="230" class="thumbimage" />
+
<img alt="" src="https://static.igem.org/mediawiki/2017/f/f1/Esterase_Formel.png" width="710" height="290" class="thumbimage" />
 
</a>   
 
</a>   
 
<div class="thumbcaption">
 
<div class="thumbcaption">
  <div class="magnify">
+
<div class="magnify">
    <a href="https://static.igem.org/mediawiki/2017/8/8a/Limonenepathway.png" class="internal" title="Enlarge">
+
<a href="https://static.igem.org/mediawiki/2017/f/f1/Esterase_Formel.png" class="internal" title="Enlarge">
      <img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" />
+
  <img src="/wiki/skins/common/images/magnify-clip.png" width="15" height="11" alt="" />
 
</a>
 
</a>
 
</div>
 
</div>
<b>Figure 1:</b> Limonene fragrance pathway from E. Jongedijk and K. Cankar et. al (E. Jongedijk and K. Cankar et. al 2016).
+
<b>Figure 1:</b> Pet19-LipB.
 
</div>
 
</div>
 
</div>
 
</div>
Line 337: Line 242:
 
</div>
 
</div>
 
</div>
 
</div>
<div class="row section">  
+
<div class="row section">
  <div class="col-xs-12 col-sm-12 col-md-12">
+
<div class="col-xs-12 col-sm-12 col-md-12">
<h2 align=middle>Extracellular expression of Esterases, Lipases, Keratinases and fragrance molecules</h2>
+
  <h4>Material:</h4>
<p>(Choi und Lee 2004; Mergulhão et al. 2005)</p>
+
  <p><ul><li>Agar plates</li>
 +
  <li>Spectrometer</li>
 +
  <li>Photometer</li>
 +
  <li>Centrifuge</li>
 +
  <li>96 well plates</li></ul></p>
 +
  <h4>Chemicals:</h4>
 +
  <p><ul><li>LB media</li>
 +
  <li>PBS buffer</li>
 +
  <li>Arabinose stock solution [500 mM]</li>
 +
  <li>IPTG stock solution [1 M]</li>
 +
  <li>p-nitrophenyl butyrate [50 mM] diluted in acetonitril</li></ul></p>
 +
<br>
 +
  <h4>Method:</h4>
 +
  <p>Preparation of the cell lysate</p>
 +
  <p><ol><li>Pick a colony from the agar plates</li>
 +
  <li>Grow the colony in 5 mL LB media (+antibiotic) over night</li>
 +
  <li>Dilute the overnight culture 1:100 in 15 mL LB media (+antibiotic)</li>
 +
  <li>Grow the cells until the OD600 reached 0,2</li>
 +
  <li>Induce gene expression with IPTG/arabinose with different concentrations
 +
(0 mM, 1 mM, 2 mM, 3 mM) over night</li>
 +
  <li>Grow the cell culture until the OD600 reached 6</li>
 +
  <li>Harvest the cells by centrifugation (10 min, 3000 rpm)</li>
 +
<li>Resuspend the cell pellet in 10 mL PBS buffer</li></ol>
 +
  </p>
 +
  <br>
 +
  <p>Enzyme activity assay: Continous spectrometric rate determination </p>
 +
  <p><ol><li>100 µL of the supernatant (1:10 dilution) or resuspended cell pellet and 10 µL p-nitrophenyl butyrate with different concentrations [2.5; 5; 10; 15; 20 mM] are mixed in a 96 well plate</li>
 +
  <li>Photometric enzyme activity test with the following conditions: wavelength: 405 nm,
 +
temperature: 37 °C
 +
time: measurement every 45 seconds for 30 min
 +
96 well plate is shaked (200 rpm) </li>
 +
  <li>Calculation of the enzyme activity out of the absorption rates. 1 unit (U) was defined as the amount of enzyme that catalyzes the reaction of 1 nanomol of substrate per minute. </li></ol>
 +
  </p>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="row section">
 
<div class="row section">
<div class="col-xs-12 col-sm-12 col-md-12">  
+
    <div class="col-xs-12 col-sm-12 col-md-12">
<p>In our project we aimed to secrete the produced enzymes.
+
<h3>Determination of protein concentration - BCA Assay (Pierce™ BCA Protein Assay Kit – Thermo Scientific)</h3>
  We used E. coli, a gram negative bacteria with two membranes that needed to be crossed from the enzymes.
+
<br>
  E. coli naturally doesn’t secrete high amounts of proteins which forced us to add a signal peptide to achieve secretory production of the enzymes.
+
<h4> Material:</h4>
  With this additional step we aimed to save valuable money and time in the production process of our biological tube cleaner.
+
<p><ul><li>BCA reagent A and B (provided in Assay Kit)</li>
</p>
+
<li>BSA stock solution (provided in Assay Kit)</li>
<p>In principal, the secretory production of recombinant proteins has several advantages. These include:
+
<li>96-Well microplates</li>
<p>
+
<li>Microplate reader</li>
   <ul><li>easier downstream processing (no cell disruption and easier protein purification)
+
<li>Microplate incubator/shaker</li></ul></p>
 +
<br>
 +
<h4>Method:</h4>
 +
<br>
 +
<p><ol><li>Preparation of serial dilution of BSA-standard:</li>
 +
   <table> <tr> <th>Vial</th> <th>Volume of Diluent (µL)</th><th>Volume and Source of BSA (µL)</th> <th>Final BSA Concentration (µg/mL)</th></tr>
 +
  <tr><td>A</td><td>0</td><td>300 of Stock</td><td>2000</td></tr>
 +
  <tr><td>B</td><td>125</td><td>375 of Stock</td><td>1500</td></tr>
 +
  <tr><td>C</td><td>325</td><td>325 of Stock</td><td>1000</td></tr>
 +
  <tr><td>D</td><td>175</td><td>175 of vial B dilution</td><td>750</td></tr>
 +
  <tr><td>E</td><td>325</td><td>325 of vial C dilution</td><td>500</td></tr>
 +
  <tr><td>F</td><td>325</td><td>325 of vial E dilution</td><td>250</td></tr>
 +
  <tr><td>G</td><td>325</td><td>325 of vial F dilution</td><td>125</td></tr>
 +
  <tr><td>H</td><td>400</td><td>100 of vial G dilution</td><td>25</td></tr>
 +
  <tr><td>I</td><td>400</td><td>0</td><td>0=Blank</td></tr>
 +
  </table>
 +
<dd>Table: User Guide, Pierce™ BCA Protein Assay Kit – Thermo Scientific</dd>
 +
<br>
 
</li>
 
</li>
<li>correct protein folding (avoidance of the formation of inclusion bodies) to keep biological activity
+
<li>Preparation of Assay Working Reagent: mix 50 parts of Reagent A with 1 part of Reagent B.</li>
</li>
+
<li>If necessary dilute your samples to fit into the working range of 20-2000µg/mL.</li>
<li>less protease activity in the periplasma and in the media than in the cytoplasma –> no protein degradation
+
<li>Pipette 25 µL of each standard and sample into a microplate and add 200 µL of Working Reagent.</li>
</li>
+
<li>Mix for 30 seconds on plate shaker and incubate at 37°C for another 30 minutes.</li>
<li>better access to the substrate  higher enzyme activites
+
<li>After cooling down to room temperature, measure the absorbance at 562 nm.</li></ol></p>
</li>
+
<li>better disulfide bond formation in the periplasm because of the non reducing environment
+
</li>
+
</ul>
+
</p>
+
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="row section">
 
<div class="row section">
<div class="col-xs-12 col-sm-12 col-md-12">  
+
    <div class="col-xs-12 col-sm-12 col-md-12">
<p>There are two main mechanism that are used for secretory protein production, type I and type II mechanism.
+
        <h3>Semi-quantitative hair degradation assay for keratinases</h3>
  Type I is a mechanism consisting of one step across the two cellular membranes without a periplasmic intermediate.  
+
        <br>
  One disadvantage of type I mechanism ist hat the signal peptide remains attached so an additional cleavage step is required to obtain the mature protein.  
+
        <p>To prove any enzyme activity a semi-quantitative hair degradation assay was performed.
  Type II mechanism can be divided in three submechanisms: SecB-dependend pathway, SRP pathway and TAT (twin arginine translocation) pathway.  
+
First, cultures of <i>E. coli</i> containing kerA, kerUS, kerP plasmid and one wild-type <i>E. coli</i> were grown at 37°C in sterile LB broth. Chloramphenicol (final concentration 35 µg/mL) was added to the cultures containing kerA and kerUS. Kanamycin (final concentration 50 µg/mL) was added to the cultures containing the kerP. After incubation OD600 was measured before inducing cultures containing kerA and kerUS with IPTG with a final concentration of 1mM.
  Type II is a two step mechanism.  
+
Human hair was reduced to smaller pieces and then dried for 1 hour at 65°C. Afterwards the hair was distributed in 0.05 g aliquots and the full amount of each culture was added.  
  The non processed proteins are attached with a a signal sequence and exported to the periplasm.  
+
The cultures + hair were incubated 120 hours at 37°C with slightly shaking.</p>
  The premature protein is processed into the mature protein by cleavage of the signal peptide.  
+
<br>
  The SecB pathway is the mostly used way for the extracellular production of recombinant proteins.  
+
<h3>Skim milk plate assay for keratinases</h3>
  SRP can be used for proteins that fold too quickly and incorrectly in the cytoplasm and TAT allows the secretion of poteins that are already folded.  
+
<br>
 +
<p>This assay was performed to show qualitative enzyme activity.
 +
The different keratinases (kerA, kerUS and kerP) should degrade the casein in the milk, seen as clear zones around the cultures itself or the supernatant of the cells.
 
</p>
 
</p>
</div>
+
<h4>Preparation of skim milk plates:</h4>
</div>
+
<div class="row section">
+
<div class="col-xs-12 col-sm-12 col-md-12"> 
+
<p>In our project we use the SecB dependend pathway to secrete the enzymes.
+
  We needed to optimize the expression level with appropriate promotor strength to prevent the formation of inclusion bodies.
+
  Additionally it’s important to achieve high secretion levels which is a known problem in recombinant enzyme secretion.
+
  The efficiency of the protein secretion depends on the host strain, signal sequence and the type of protein to be secreted (e. g. high protein size causes limited enzyme secretion).
+
</p>
+
</div>
+
</div>
+
 
<br>
 
<br>
 +
<p>First 100 mL LB/agar and 5 g skim milk powder in 125 mL distilled water was prepared. Both solutions were autoclaved and mixed after cooling down.
 +
For the plates used for kerA and kerUS cultures chloramphenicol (35 µg/mL) was added – in case of kerP kanamycin (50 µg/mL) was used to prepare plates.
 +
The plates were poured and stored at 4°C.</p>
 +
<h4>Assay:</h4>
 +
<p><ul><li>kerA/kerUS: Before spreading both keratinases on the plates, cells were induced with 1mM IPTG o/n at 37°C.
 +
  After incubation 10 µL of the induced cell cultures and supernatant, cell culture without IPTG induction and a wild-type <i>E. coli</i> control was spread on skim milk plates containing chloramphenicol.
 +
  The plates were incubated at room temperature for four days.
 
<br>
 
<br>
<br>
+
<li>kerP: 10 µL of cell culture, supernatant and a wild-type <i>E. coli</i> control was spread on skim milk plates containing kanamycin.  
<div class="row section">
+
   The plates were incubated at room temperature for four days.</li></ul>
<div class="col-xs-12 col-sm-12 col-md-12">
+
  <foot>
+
  <p>REFERENCES
+
    <ol>
+
  <li>Metabolic engineering of <i>Escherichia coli</i> for production of 2-Phenylethylacetate from L-phenylalanine (2017), D. Guo and L. Zhang et al.</li>
+
  <li>Biotechnological production of limonene in microorganisms (2016), E. Jongedijk and K. Cankar et al. </li>
+
  <li>Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered <i>Escherichia coli</i> (2015), W. Liu and R. Zhang et al. </li>
+
   <li>Rose Scent: Genomics Approach to Discovering Novel Floral Fragrance–Related Genes (2002), I. Guterman and M. Shalit et al. </li>
+
  <li>Eggert, Thorsten; Pencreac'h, Gaelle; Douchet, Isabelle; Verger, Robert; Jaeger, Karl-Erich (2000): A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. In: European Journal of Biochemistry 267 (21), p. 6459–6469</li>
+
  <li>Eom, Gyeong Tae; Lee, Seung Hwan; Oh, Young Hoon; Choi, Ji Eun; Park, Si Jae; Song, Jae Kwang (2014): Efficient extracellular production of type I secretion pathway-dependent Pseudomonas fluorescens lipase in recombinant Escherichia coli by heterologous ABC protein exporters. In: Biotechnology letters 36 (10), p. 2037–2042</li>
+
  <li>Kang, Chul-Hyung; Oh, Ki-Hoon; Lee, Mi-Hwa; Oh, Tae-Kwang; Kim, Bong Hee; Yoon, Jung-Hoon (2011): A novel family VII esterase with industrial potential from compost metagenomic library. In: Microbial cell factories 10, p. 41</li>
+
  <li>Panda, T.; Gowrishankar, B. S. (2005): Production and applications of esterases. In: Applied microbiology and biotechnology 67 (2), S. 160–169. DOI: 10.1007/s00253-004-1840-y.</li>
+
  <li>Shamsher Singh Kanwar (2016): Carboxylesterases: Sources, Characterization and Broader Applications. In: iMedPub Journals. Insights in Enzyme Research </li>
+
  <li>Choi, J. H.; Lee, S. Y. (2004): Secretory and extracellular production of recombinant proteins using Escherichia coli. In: Applied microbiology and biotechnology 64 (5), S. 625–635. DOI: 10.1007/s00253-004-1559-9.</li>
+
  <li>Mergulhão, F. J. M.; Summers, D. K.; Monteiro, G. A. (2005): Recombinant protein secretion in Escherichia coli. In: Biotechnology advances 23 (3), S. 177–202. DOI: 10.1016/j.biotechadv.2004.11.003.</li>
+
</ol>
+
 
</p>
 
</p>
</foot>
+
<br>  
 +
 
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
  
  

Revision as of 17:18, 1 November 2017

Protocols & Experiments

Preparation of chemically competent DH5alpha E. coli cells

Material:

  • LB media
  • TSS buffer
  • DH5alpha E. coli cells (o/n colonies on agar plates)

Method:

  1. Pick one colony of the plate and transfer into 5 mL of LB media. Grow the culture over night for 16-18 hours at 37°C
  2. Transfer 1 mL of the overnight culture into a shaking flask with 99 mL of LB media. Measure optical density (OD) at 600 nm and incubate culture at 37°C (shaking) to an OD of 0,5.
  3. Divide the 100 mL into two 50 mL tubes and incubate 10 min on ice.
  4. Spin the tubes at 3000 rpm for 10 minutes at 4°C
  5. Resuspend the pellet of competent cells with 10 % TSS buffer (5 mL).
  6. Aliquot 100 µL of the cell solution into 1.5 mL microtubes (all steps on ice!).
  7. Store the competent cells at -80°C

Heat-shock Transformation of E. coli cells

Material:

  • SOC media
  • Agar plates with appropriate antibiotic

Method:

  1. Thaw chemically competent cells on ice.
  2. Transfer 50 µL of the cells into a 1.5 mL microtube, add 1 µL of the desired DNA and incubate on ice for 30 minutes.
  3. Place the tube in a 42 deg°C water bath for 60 seconds.
  4. After heat shock leave cells on ice for 5 minutes.
  5. Add 950 µL of SOC media and shake cells for 2 hours at 37°C
  6. Pipet 100 µL of the cells onto an appropriate plate and spread them using sterile glass beads. Incubate overnight at 37 deg. Celsius and hope for colonies in the morning to prove a successful transformation.

Preparation of LB media

Material:

  • Tryptone
  • NaCl
  • Yeast extract

Method:

  1. Fill a container (bottle) to about 60/70 % its volume with destilled water.
  2. Add 10 g/L Tryptone, 10 g/L NaCl and 5 g/L of yeast extract.
  3. Stir properly and fill up the remaining volume with distilled water.
  4. Treat LB media by autoclave.

Preparation of LB agar

Material:

  • Tryptone
  • NaCl
  • Yeast extract
  • Agar

Method:

  1. Fill a container (bottle) to about 60/70 % its volume with destilled water.
  2. Add 10 g/L Tryptone, 10 g/L NaCl, 5 g/L of yeast extract and 20 g/L agar.
  3. Stir properly and fill up the remaining volume with distilled water.
  4. Treat by autoclave.

Preparation of M9 media

Salt solution:

  • 3 g Na2HPO4
  • 1,5 g KH2PO4
  • 0,5 g NH4Cl
  • 0,25 g NaCl
  • 1 mL MgSO4
  • 50 µL CaCl2

Sugar solution:

  • 20 g/LGlycerol
  • 5 g/L Yeast
  • 10 mg Thiamine
  • 1 mL Micronutrients


Glycerol stocks – storage of bacterial strains

Material:

  • Glycerol

Method:

  1. Mix 700 µL of overnight culture with 300 µL glycerol.
  2. Store at -80°C

Polymerase chain reaction (PCR)

Material:

  • Primer forward & reverse
  • Template DNA
  • NEB Q5® High-Fidelity 2X Master Mix (dNTPs + Polymerase)
  • Distilled water
  • PCR-Cycler

Method:

  1. All steps have to be performed on ice.
  2. 50 µL approach (mix well):

ComponentsVolumeConcentration
Q5 Master Mix 25 µL 1x
10 µM fw primer 2,5 µL 0,5 µM
10 µM rv primer 2,5 µL 0,5 µM
Template DNA <1000 ng
Water remaining volume to 50 µL

PCR-cycler conditions:

Step CyclesTemperature Time
Denaturation198°C30 sec
Annealing25-3598°C5-10 sec
Elongation72°C20-30sec/kb
Final extension172°C2 min
Hold4-10°C

Determination of DNA concentration

  • DNA concentration is determined by using a Nanodrop ()
  • The absorbance at 260 nm is converted to concentration using the Lambert – Beer Equation by the program
  • The purity of the sample is confirmed by the 260/280 ratio (contamination with proteins) and the 260/230 ratio (presence of co-purified contaminants)
  • For pure DNA the 260/280 ratio should be around 1.8 and the 260/280 ratio should be around 1.8 – 2.2. (ND-1000-v3.4-users-manual, Thermo Scientific)

Mini-Prep (based on Fast-n-Easy Plasmid Mini-Prep Kit Jena Bioscience)

Material:

  • Lysis buffer
  • Neutralization buffer
  • Column-Activation buffer
  • Wash buffer
  • Elution buffer
  • Binding column

Method:

  1. Harvest the over-night culture by centrifugation (3000 g for 10 minutes.)
  2. Activate the Binding Column by adding 100 µl of Activation buffer and centrifugation at 10000 g for 30 seconds.
  3. For cell lysis resuspend the cell pellet in 300 µl Lysis buffer (pipetting or vortexing).
  4. Add 300 µl of Neutralization buffer and mix by inverting the tube (4 – 6 times).
  5. Centrifuge at 10000 g for 5 minutes.
  6. The colour of the supernatant should be yellow.
  7. Transfer the supernatant into the Binding Column and centrifuge at 10000 g for 30 seconds. Discard the flow-through.
  8. Add 500 µl Washing buffer to the column and centrifuge at 10000 g for 30 seconds. Discard the flow-through.
  9. Place the Binding Column into a clean microtube an add 30 µl Elution buffer.
  10. Incubate for 1 minute and centrifuge at 10000 g for 1 minute to elute DNA.
  11. The eluted DNA could be used directly or should be stored at -20°C.

Restriction digest

Material:

  • Plasmid DNA
  • Restriction Enzymes
  • Restriction buffer
  • H2O
  • Ice

Method:

  1. All steps must be performed on ice.
  2. For a 20 µl double digest approach following amount are needed:

  3. Components VolumeConcentration
    Restriction buffer (10X)2 µL1X
    Restriction enzyme 11 µL
    Restriction enzyme 21 µL
    Plasmid DNAx µL1 µg total
    H2Oadd to 20 µL

  4. Digest the approach for 1h at 37 °C.
  5. To stop the reaction, incubate the reaction for 20 minutes at 80 °C.

Gel-Extraction (based on Gel DNA Recovery Kit from Zymo Research)

Material:

  • Extraction buffer (ADB buffer)
  • Washing buffer
  • Elution buffer
  • Spin column

Method:

  1. Cut out the area of the gel containing the DNA fragment of interest.
  2. Add ADB buffer (3 volumes to 1 volume gel).
  3. Dissolve the gel by incubation at 37 – 55 °C for 5 – 10 minutes.
  4. Transfer the solution to a spin column and centrifuge for 30 seconds. Discard the flow-through.
  5. Add 200 µl Washing buffer and centrifuge for 30 seconds. Discard the flow-through.
  6. Repeat the wash step.
  7. Place the column in a clean microtube and add more than 6 µl Elution buffer. Centrifuge for 1 minute to elute DNA.

Enzyme activity assay of the esterases EstCS2 (BBa_K1149002) and LipB


To determine the enzyme activity of EstCS2 and LipB a photometric assay was prepared. Two wildtypes were compared with the enzyme activity of the esterases. The results were obtained from biological triplicates.

Principle

Figure 1: Pet19-LipB.

Material:

  • Agar plates
  • Spectrometer
  • Photometer
  • Centrifuge
  • 96 well plates

Chemicals:

  • LB media
  • PBS buffer
  • Arabinose stock solution [500 mM]
  • IPTG stock solution [1 M]
  • p-nitrophenyl butyrate [50 mM] diluted in acetonitril


Method:

Preparation of the cell lysate

  1. Pick a colony from the agar plates
  2. Grow the colony in 5 mL LB media (+antibiotic) over night
  3. Dilute the overnight culture 1:100 in 15 mL LB media (+antibiotic)
  4. Grow the cells until the OD600 reached 0,2
  5. Induce gene expression with IPTG/arabinose with different concentrations (0 mM, 1 mM, 2 mM, 3 mM) over night
  6. Grow the cell culture until the OD600 reached 6
  7. Harvest the cells by centrifugation (10 min, 3000 rpm)
  8. Resuspend the cell pellet in 10 mL PBS buffer


Enzyme activity assay: Continous spectrometric rate determination

  1. 100 µL of the supernatant (1:10 dilution) or resuspended cell pellet and 10 µL p-nitrophenyl butyrate with different concentrations [2.5; 5; 10; 15; 20 mM] are mixed in a 96 well plate
  2. Photometric enzyme activity test with the following conditions: wavelength: 405 nm, temperature: 37 °C time: measurement every 45 seconds for 30 min 96 well plate is shaked (200 rpm)
  3. Calculation of the enzyme activity out of the absorption rates. 1 unit (U) was defined as the amount of enzyme that catalyzes the reaction of 1 nanomol of substrate per minute.

Determination of protein concentration - BCA Assay (Pierce™ BCA Protein Assay Kit – Thermo Scientific)


Material:

  • BCA reagent A and B (provided in Assay Kit)
  • BSA stock solution (provided in Assay Kit)
  • 96-Well microplates
  • Microplate reader
  • Microplate incubator/shaker


Method:


  1. Preparation of serial dilution of BSA-standard:
  2. Vial Volume of Diluent (µL)Volume and Source of BSA (µL) Final BSA Concentration (µg/mL)
    A0300 of Stock2000
    B125375 of Stock1500
    C325325 of Stock1000
    D175175 of vial B dilution750
    E325325 of vial C dilution500
    F325325 of vial E dilution250
    G325325 of vial F dilution125
    H400100 of vial G dilution25
    I40000=Blank
    Table: User Guide, Pierce™ BCA Protein Assay Kit – Thermo Scientific

  3. Preparation of Assay Working Reagent: mix 50 parts of Reagent A with 1 part of Reagent B.
  4. If necessary dilute your samples to fit into the working range of 20-2000µg/mL.
  5. Pipette 25 µL of each standard and sample into a microplate and add 200 µL of Working Reagent.
  6. Mix for 30 seconds on plate shaker and incubate at 37°C for another 30 minutes.
  7. After cooling down to room temperature, measure the absorbance at 562 nm.

Semi-quantitative hair degradation assay for keratinases


To prove any enzyme activity a semi-quantitative hair degradation assay was performed. First, cultures of E. coli containing kerA, kerUS, kerP plasmid and one wild-type E. coli were grown at 37°C in sterile LB broth. Chloramphenicol (final concentration 35 µg/mL) was added to the cultures containing kerA and kerUS. Kanamycin (final concentration 50 µg/mL) was added to the cultures containing the kerP. After incubation OD600 was measured before inducing cultures containing kerA and kerUS with IPTG with a final concentration of 1mM. Human hair was reduced to smaller pieces and then dried for 1 hour at 65°C. Afterwards the hair was distributed in 0.05 g aliquots and the full amount of each culture was added. The cultures + hair were incubated 120 hours at 37°C with slightly shaking.


Skim milk plate assay for keratinases


This assay was performed to show qualitative enzyme activity. The different keratinases (kerA, kerUS and kerP) should degrade the casein in the milk, seen as clear zones around the cultures itself or the supernatant of the cells.

Preparation of skim milk plates:


First 100 mL LB/agar and 5 g skim milk powder in 125 mL distilled water was prepared. Both solutions were autoclaved and mixed after cooling down. For the plates used for kerA and kerUS cultures chloramphenicol (35 µg/mL) was added – in case of kerP kanamycin (50 µg/mL) was used to prepare plates. The plates were poured and stored at 4°C.

Assay:

  • kerA/kerUS: Before spreading both keratinases on the plates, cells were induced with 1mM IPTG o/n at 37°C. After incubation 10 µL of the induced cell cultures and supernatant, cell culture without IPTG induction and a wild-type E. coli control was spread on skim milk plates containing chloramphenicol. The plates were incubated at room temperature for four days.
  • kerP: 10 µL of cell culture, supernatant and a wild-type E. coli control was spread on skim milk plates containing kanamycin. The plates were incubated at room temperature for four days.