|
|
Line 19: |
Line 19: |
| </ul> | | </ul> |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">By decorating the peroxisomes with the v-SNARE Snc1 we successfully secreted their entire contents | + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | |
| + | <ul> |
| + | <li> |
| + | By decorating the peroxisomes with the v-SNARE Snc1 we successfully secreted their entire contents |
| + | </li> |
| + | </ul> |
| + | |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">With two different sensors we were able to efficiently measure the pH and the redox potential inside our yeast peroxisomes. | + | |
| + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | <ul> |
| + | <li> |
| + | With two different sensors we were able to efficiently measure the pH and the redox potential inside our yeast peroxisomes. |
| + | </li> |
| + | </ul> |
| + | |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">Via fluorescence microscopy we verified that the integration of new membrane proteins into the peroxisomal membrane is possible. | + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | <ul> |
| + | <li> |
| + | Via fluorescence microscopy we verified that the integration of new membrane proteins into the peroxisomal membrane is possible. |
| + | |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">By successfully translocating the required enzymes for the metabolic pathways of nootkatone and violacein into the peroxisome and actually synthesizing the latter, we developed a proof of concept for our toolbox | + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | <ul> |
| + | <li> |
| + | By successfully translocating the required enzymes for the metabolic pathways of nootkatone and violacein into the peroxisome and actually synthesizing the latter, we developed a proof of concept for our toolbox |
| + | </li> |
| + | </ul> |
| + | |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">We successfully implemented a way of customizing the size and number of the peroxisomes into our toolbox. | + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | <ul> |
| + | <li> |
| + | We successfully implemented a way of customizing the size and number of the peroxisomes into our toolbox. |
| + | </li> |
| + | </ul> |
| + | |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">With a high throughput assay we characterized the import efficiency of different PTS2 sequences. | + | |
| + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | <ul> |
| + | <li> |
| + | With a high throughput assay we characterized the import efficiency of different PTS2 sequences. |
| + | </li> |
| + | </ul> |
| + | |
| + | |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">To get a better understanding of possible problems and pitfalls of our metabolic engineering concepts we extensively modeled the whole nootkatone pathway and the benefits of it being translocated inside our compartment. | + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | <ul> |
| + | <li> |
| + | To get a better understanding of possible problems and pitfalls of our metabolic engineering concepts we extensively modeled the whole nootkatone pathway and the benefits of it being translocated inside our compartment. |
| + | </li> |
| + | </ul> |
| + | |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">For our planned optogenetic experiments we designed an affordable lightbox which can easily be assembled in a short time. | + | |
| + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | <ul> |
| + | <li> |
| + | For our planned optogenetic experiments we designed an affordable lightbox which can easily be assembled in a short time. |
| + | </li> |
| + | </ul> |
| + | |
| + | |
| <br> | | <br> |
− | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left">All our excellent results can be combined into a highly variable compartment toolbox for designing artificial compartments based on the peroxisomes in <i>S. cerevisiae</i> with an enormous range of applications. | + | <img src="https://static.igem.org/mediawiki/2017/5/50/T--Cologne-Duesseldorf--check.jpeg" style="max-width:100px;" align="left"> |
| + | |
| + | <ul> |
| + | <li> |
| + | All our excellent results can be combined into a highly variable compartment toolbox for designing artificial compartments based on the peroxisomes in <i>S. cerevisiae</i> with an enormous range of applications. |
| + | </li> |
| + | </ul> |
| + | |
| </p> | | </p> |
| | | |