Difference between revisions of "Team:Cologne-Duesseldorf/Test4"

Line 3: Line 3:
 
<html>
 
<html>
 
<head>
 
<head>
 +
 +
 +
 +
<div class="callout">
 +
<table>
 +
      <tbody>
 +
            <tr>
 +
              <th><h3 style="color:rgb(0,0,0)"><a style="color:rgb(0,0,0)" href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results">Results</h3></th>           
 +
              <th><h3 style="color:rgb(0,0,0)">Achieved</h3></th>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>We were able to design and successfully test an orthogonal peroxisomal protein <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#PEX5Import">import mechanism</a> for peroxisomes in <i>S. cerevisiae<i></td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>By decorating the peroxisomes with the v-SNARE Snc1 we successfully <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Secretion">secreted</a> their entire contents</td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>With two different <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Sensors">sensors</a> we were able to efficiently measure the pH and the redox potential inside our yeast peroxisomes</td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>Via fluorescence microscopy we verified that the <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#MembraneIntegration">integration of new membrane proteins</a> into the peroxisomal membrane is possible</td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>By successfully translocating the required enzymes for the metabolic pathways of <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Nootkatone">Nootkatone</a> and <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Violacein">Violacein</a> into the peroxisome and actually synthesizing the latter, we developed a proof of concept for our toolbox</td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>We successfully implemented a way of customizing the <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#SizeAndNumber">size and number</a> of the peroxisomes into our toolbox</td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>With a high throughput assay we characterized the import efficiency of <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results#Pex7Import">different PTS2 sequences</a></td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>To get a better understanding of possible problems and pitfalls of our metabolic engineering concepts we extensively <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Model">modeled</a> the whole nootkatone pathway and the benefits of it being translocated inside our compartment</td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>For our planned optogenetic experiments we designed an affordable <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Hardware">lightbox</a> which can easily be assembled in a short time
 +
</td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
            <tr>
 +
              <td>All our excellent <a href="https://2017.igem.org/Team:Cologne-Duesseldorf/Results">results</a> can be combined into a highly variable compartment <strong>toolbox</strong> for designing artificial compartments based on the peroxisomes in <i>S. cerevisiae</i> with an enormous range of applications
 +
</td>
 +
              <td><img src="https://static.igem.org/mediawiki/2017/4/46/T--Cologne-Duesseldorf--check.png" width="100" height="100"></td>
 +
            </tr>
 +
 +
 +
      </tbody>
 +
</table>
 +
</div>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
 
<style>
 
<style>
 
#bodyContent ul.eric li::before {
 
#bodyContent ul.eric li::before {

Revision as of 21:36, 1 November 2017

Results

Achieved

We were able to design and successfully test an orthogonal peroxisomal protein import mechanism for peroxisomes in S. cerevisiae
By decorating the peroxisomes with the v-SNARE Snc1 we successfully secreted their entire contents
With two different sensors we were able to efficiently measure the pH and the redox potential inside our yeast peroxisomes
Via fluorescence microscopy we verified that the integration of new membrane proteins into the peroxisomal membrane is possible
By successfully translocating the required enzymes for the metabolic pathways of Nootkatone and Violacein into the peroxisome and actually synthesizing the latter, we developed a proof of concept for our toolbox
We successfully implemented a way of customizing the size and number of the peroxisomes into our toolbox
With a high throughput assay we characterized the import efficiency of different PTS2 sequences
To get a better understanding of possible problems and pitfalls of our metabolic engineering concepts we extensively modeled the whole nootkatone pathway and the benefits of it being translocated inside our compartment
For our planned optogenetic experiments we designed an affordable lightbox which can easily be assembled in a short time
All our excellent results can be combined into a highly variable compartment toolbox for designing artificial compartments based on the peroxisomes in S. cerevisiae with an enormous range of applications
  • We were able to design and successfully test an orthogonal peroxisomal protein import mechanism for the peroxisome in S. cerevisiae.
  • By decorating the peroxisomes with the v-SNARE Snc1 we successfully secreted their entire contents
  • With two different sensors we were able to efficiently measure the pH and the redox potential inside our yeast peroxisomes.
  • Via fluorescence microscopy we verified that the integration of new membrane proteins into the peroxisomal membrane is possible.
  • By successfully translocating the required enzymes for the metabolic pathways of nootkatone and violacein into the peroxisome and actually synthesizing the latter, we developed a proof of concept for our toolbox
  • We successfully implemented a way of customizing the size and number of the peroxisomes into our toolbox.
  • With a high throughput assay we characterized the import efficiency of different PTS2 sequences.
  • To get a better understanding of possible problems and pitfalls of our metabolic engineering concepts we extensively modeled the whole nootkatone pathway and the benefits of it being translocated inside our compartment.
  • For our planned optogenetic experiments we designed an affordable lightbox which can easily be assembled in a short time.