Aman54kumar (Talk | contribs) |
|||
Line 21: | Line 21: | ||
<li>a laser beam</li> | <li>a laser beam</li> | ||
</ul> | </ul> | ||
+ | <br> | ||
The gain medium is a material which allows light to amplify. This is usually located in an optical cavity. What this means is that there is a mirror on either side of the medium, in order to make the light bounce back and forth. This amplifies the light, as it passes through the gain medium each time. One of the mirrors is usually not 100% reflective, since there will a small output (the laser beam). For anything to happen within the optical cavity we need a power source that allows the gain medium to amplify the light. This energy is supplied through a process called pumping and is usually either light or an electrical current.<br><br> | The gain medium is a material which allows light to amplify. This is usually located in an optical cavity. What this means is that there is a mirror on either side of the medium, in order to make the light bounce back and forth. This amplifies the light, as it passes through the gain medium each time. One of the mirrors is usually not 100% reflective, since there will a small output (the laser beam). For anything to happen within the optical cavity we need a power source that allows the gain medium to amplify the light. This energy is supplied through a process called pumping and is usually either light or an electrical current.<br><br> | ||
</div> | </div> |
Revision as of 01:00, 2 November 2017
Lasers
- the gain medium
- the laser pumping energy
- the high reflector
- output coupler
- a laser beam
The gain medium is a material which allows light to amplify. This is usually located in an optical cavity. What this means is that there is a mirror on either side of the medium, in order to make the light bounce back and forth. This amplifies the light, as it passes through the gain medium each time. One of the mirrors is usually not 100% reflective, since there will a small output (the laser beam). For anything to happen within the optical cavity we need a power source that allows the gain medium to amplify the light. This energy is supplied through a process called pumping and is usually either light or an electrical current.
Enter the biolaser
LaCell - Project Plan
In addition, we wanted to test the laser on a simpler system, namely a protein solution containing large amounts of sfGFP. This was partially to test the setup, but also to examine how a simple system without the cells would function compared to one containing living organisms. For this, we managed to find a particular type of sfGFP that had been modified by a His-tag, allowing for simple purification.
Superfolder Green Fluorescent Protein (sfGFP) that is, compared to regular GFP, more resistant to denaturation and has improved folding kinetics. [4]
Transgenic E. coli is used to synthesize sfGFP and then purify it, which can be used for proving the concept of our biolaser.
As a precaution, in case we would face problems with the assembly of our expression system and thus run low on time, we started growing a transformed S. Pombe-strain with an existing expression system from the yeast lab we were working at. The system used here was NMT1-GFP-PPK18 rather than NMT1-sfGFP-CYC1, but to have a functional proof-of-concept for the laser, this was deemed to be an acceptable compromise.
References
1 - Nature Photonics 5, 406-410 2011: Single-cell Biological Lasers, Malthe C. Gathers & Seok Hyun Yun - DOI:10.1038/nphoton.2011.99
2 - Science Advances 19 Aug 2016: An exciton-polariton laser based on biologically produced fluorescent protein, Dietrich et al - DOI: 10.1126/sciadv.1600666
4 - PLoS ONE, 1-7 2008: Laboratory Evolution of Fast-Folding Green Fluorescent Protein Using Secretory Pathway Quality Control Fisher, A. C., & DeLisa, M. P
5 BioMol.net. (2017, July 30). Retrieved from Protein Extinction Coefficient Calculator: http://www.biomol.net/en/tools/proteinextinction.htm
6 iGEM. (2017, October 30). Help:Protocols/Transformation. Retrieved from Registry of Standard Biological Parts: http://parts.igem.org/Help:Protocols/Transformation