Difference between revisions of "Team:UiOslo Norway/Modelling"

 
(44 intermediate revisions by 4 users not shown)
Line 9: Line 9:
 
</head>
 
</head>
  
<h1 class="h1-font-other">Methods</h1>
+
<h1 class="h1-font-other">Modelling</h1>
 
<div class="bootstrap-overrides padding-left padding-right">
 
<div class="bootstrap-overrides padding-left padding-right">
 +
 +
  
  
Line 17: Line 19:
 
             <div class="col-md-12">
 
             <div class="col-md-12">
 
                 <ul id="tab2" class="nav nav-pills">
 
                 <ul id="tab2" class="nav nav-pills">
                     <li class="active"><a href="#tab-item1" data-toggle="tab">Gibson</a></li>
+
                     <li class="active"><a href="#tab-item1" data-toggle="tab">Light</a></li>
                     <li><a href="#tab-item2" data-toggle="tab">Transformation</a></li>
+
                     <li><a href="#tab-item2" data-toggle="tab">LED</a></li>
                     <li><a href="#tab-item3" data-toggle="tab">PCR</a></li>
+
                     <li><a href="#tab-item3" data-toggle="tab">Setup</a></li>
                     <li><a href="#tab-item4" data-toggle="tab">Gel</a></li>
+
                     <li><a href="#tab-item4" data-toggle="tab">Lasing</a></li>
                    <li><a href="#tab-item5" data-toggle="tab">Miniprep</a></li>
+
                    <li><a href="#tab-item6" data-toggle="tab">French press</a></li>
+
                    <li><a href="#tab-item7" data-toggle="tab">sfGFP purification</a></li>
+
                    <li><a href="#tab-item8" data-toggle="tab">Growth protocol</a></li>
+
                    <li><a href="#tab-item9" data-toggle="tab">Interlab</a></li>
+
                    <li><a href="#tab-item10" data-toggle="tab">LED</a></li>
+
                    <li><a href="#tab-item11" data-toggle="tab">Biolaser</a></li>
+
 
                 </ul>
 
                 </ul>
  
Line 35: Line 30:
 
                     <div class="tab-pane fade active in" id="tab-item1">
 
                     <div class="tab-pane fade active in" id="tab-item1">
 
                         <br> <br>
 
                         <br> <br>
                         <div class="bootstrap-overrides">
+
                         <div class="bootstrap-overrides-with-pictures">
    Gibson Assembly allows for successful assembly of multiple DNA fragments, regardless of fragment length or end compatibility. (1). The method
+
                            <div class="modelling-content">
    was invented in 2009 by Daniel G. Gibson, of the J. Craig Venter Institute. The assembly reaction is carried out in
+
    one single reaction-tube, all at once, at 50° Celsius for 15-60 minutes. The process involves three different
+
    enzymatic actions. A 5’ exonuclease creates overhangs, enabling matched fragments to anneal. Then a DNA polymerase
+
    fills gap between the annealed strands and the 5´ end. Finally, a DNA ligase seals the gaps between the filled in
+
    gap and the annealed strands. <br>
+
        <h3> <a class="bodyURLcolor" href="https://www.neb.com/protocols/2012/12/11/gibson-assembly-protocol-e5510">Protocol used for Gibson </a></h3>
+
        <b>Modifications</b><br>
+
(Used for insertion of nmt1, cyc1, sfGFP and composite part into submition vector pSB1C3 and insertion of composite part into yeast vector)
+
    (i)    Volume Changes: <br>
+
            &emsp;&emsp;&emsp;&emsp;V<sub>insert</sub> = x <br>
+
            &emsp;&emsp;&emsp;&emsp;V<sub>vector</sub> = y  <br>
+
            &emsp;&emsp;&emsp;&emsp;V<sub>gibson</sub> = x+y <br>
+
            &emsp;&emsp;&emsp;&emsp;V<sub>water</sub> = 0&#181;l<br> <br>
+
   
+
    (ii)  Incubation for 1h, not 15 min <br>
+
   
+
    (iii)  Before transformation: One transformation with x ul concentrated Gibson solution and one transformation with
+
          Gibson solution diluted 1:3 and transformation with 3*x ul diluted Gibson solution. <br> <br><br>
+
                        </div>
+
                    </div>
+
  
  
 +
                                <div class="padding-right padding-left">
 +
                                    Electromagnetic radiation is energy travelling as waves or photons. This is not the time or the place to go into this discussion [1] but Einstein and Infeld said it well: <br><br>
 +
                                </div>
 +
                                <div class="padding-right padding-left">
 +
                                    <div class="media-body">
 +
                                        <blockquote>
 +
                                            "But what is light really? Is it a wave or a shower of photons? There seems no likelihood for forming a consistent description of the phenomena of light by a choice of only one of the two languages. It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do." </blockquote>
 +
                                        <h3><a href="#" class="bodyURLcolor">- Albert Einstein and Leopold Infeld, The Evolution of Physics, pg. 262-263.</a></h3>
 +
                                    </div>
 +
                                </div><br> <br>
 +
                                <div class="padding-right padding-left">
 +
                                    Light, or the visible light spectrum range from \( \in [400 - 700] \) nm in the electromagnetic radiation spectrum.
 +
                                    Above, with higher wavelengths, you will find infrared radiation (also known as IR), and under you will find the ultraviolet radiation (also known as UV). We call it <i>visible light</i> due to the fact that our eyes can only "pick up" these wavelengths. For this project we will mostly focus on light \( \lambda \in [470,520] \) nm region.
 +
                                </div>
 +
                                <div class="padding-right padding-left">
 +
                                    <br>
 +
                                    You have probably heard that nothing can travel faster than light? But not that many (non-physicist) remembers what velocity light actually travels with. In most cases it's enough to say that light travels in \( \sim 3.0 \cdot 10^{8}\) m/s in vacuum or \( \sim 6.7 {\cdot 10^{8}} \)mph.
 +
                                </div>
 +
                               
 +
                                <!-- Insert picture of spectrometer set up-->
 +
                                <div class="padding-right padding-left">
 +
                                    <br>
 +
                                    The given wavelength \(\lambda \) for a lightsource can be found using the following formula:
 +
                                </div>
 +
                                <div class= "padding-right padding-left">
 +
                                    \begin{align}
 +
                                    \lambda = d sin(\theta)
 +
                                    \end{align}
 +
                                </div>
 +
                                <div class="padding-right padding-left">
 +
                                    Where \(d\) is the grid spacing and \(\theta\) is the angle.
 +
                                </div>
 +
                                <div class="padding-right padding-left" >
 +
                                    <br>
 +
                                    Continuing this part we will refer to light as waves. As shown in the picture above, visible light ranges around  ∈[400−700] nm. This is known as the wavelength of the light, and to label it we use the symbol \(\lambda\). To better understand the physics we will start by using the rainbow as an example. Most people have had the pleasure to see this magnificent phenomenon in their life. To understand what happens to the light, we need to introduce the term refraction index. In short terms, this means that light will behave differently in different mediums if hit with an angle different than zero from the optical path. For air, the refraction index is simply \(1\), but for water it is \(1.33\), both in vacuum. Using Snell’s law and the fact that the light travels from air to water we can see that the angle with which the light will be emitted can be found by:
 +
                                </div>
 +
                                <div class="padding-right padding-left">
 +
                                    \begin{align}
 +
                                    n_1 sin\theta_1 = n_2 sin\theta_2
 +
                                    \end{align}
 +
                                </div>
 +
<div class="padding-left padding-top">
 +
<h1 class="padding-right padding-left">References</h1>
 +
                                [1] <a href="https://en.wikipedia.org/wiki/Wave%E2%80%93particle_duality"  class="bodyURLcolor"> if you want to read more about the waves vs. photons disussion </a><br>
 +
[2] Vistnes, A. (2016). Svingninger og Bølgers Fysikk. CreateSpace, An Amazone.com Company
 +
                            </div>
 +
                            </div>
 +
                            <div class="modelling-picture">
 +
                                <figure>
 +
                                    <img class="team-picture" src = "https://static.igem.org/mediawiki/2017/f/f8/T--UiOslo_norway--modelling_spectrum.png">
 +
                                    <figcaption>The electromagnetic spectrum for the electromagnetic radiation with the corresponding wavelengths.</figcaption>
 +
                                </figure>
  
 
+
                            </div>
                    <div class="tab-pane fade active in" id="tab-item2">
+
                           
                        <br> <br>
+
 
+
                        <div class="bootstrap-overrides">
+
                                <b> E.coli TOP10 </b>(Used for nmt1, cyc1, sfGFP and composite part) :
+
        One Shot® TOP10 E. coli are provided at a transformation efficiency of 1 x 109 cfu/µg supercoiled DNA and are
+
        ideal for high-efficiency cloning and plasmid propagation. They allow stable replication of high-copy number
+
        plasmids.<br><br>
+
        <a class="bodyURLcolor" href="https://www.thermofisher.com/us/en/home/references/protocols/cloning/competent-cells-protocol/routine-cloning-using-top10-competent-cells.html">Chemical Transformation Procedure </a></h3> <br><br>
+
        <b>Modifications </b> <br>
+
          In Step 5, Incubate for exactly 30-45 seconds in the 42°C water bath. Do not mix or shake.
+
          In Step 7, Add 200-250 µl of rom temperatured S.O.C medium to each vial. S.O.C is a rich medium; sterile
+
          technique must be practiced to avoid contamination <br><br>
+
    <b> E.coli DH5Alpha </b> (Used for the Interlab and for purification of sfGFP):  <br>
+
<a href="http://parts.igem.org/Help:Protocols/Transformation">Protocol</a>
+
        Modifications: <br>
+
          Step 15 and Step 16 not done <br><br><br>
+
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 83: Line 94:
  
  
                    <div class="tab-pane fade active in" id="tab-item3">
 
                        <br> <br>
 
  
                        <div class="bootstrap-overrides">
+
                     <div class="tab-pane fade" id="tab-item2">
                          The goal of PCR is to amplify a section of DNA of interest for DNA analysis (e.g. gene insertion, sequencing, etc). The amplification rate is exponential.
+
 
+
<ul>
+
<li>Tag polimerase (25µl reaction) Used for colony PCR for cyc1</li>
+
    <a class="bodyURLcolor" href="https://static.igem.org/mediawiki/2017/d/d9/T--UiOslo_Norway--5-PRIME_HotMasterMix-Protocol.pdf
+
">Protocol Here</a> <br>
+
        <b>Specifications</b> <br>
+
 
+
<table class ="customers">
+
  <tr>
+
    <td>10X Standard Taq Reaction Buffer</td>
+
    <td>2.5 μl</td>
+
  </tr>
+
  <tr>
+
    <td>10 mM dNTPs</td>
+
    <td>0.5 µl</td>
+
  </tr>
+
  <tr>
+
    <td>10 µM VF2</td>
+
    <td>0.5 µl</td>
+
  </tr>
+
  <tr>
+
    <td>10 µM VR</td>
+
    <td>0.5 µl</td>
+
  </tr>
+
  <tr>
+
    <td>Template DNA</td>
+
    <td>variable</td>
+
  </tr>
+
  <tr>
+
    <td>Taq DNA Polymerase</td>
+
    <td>0.125 µl</td>
+
  </tr>
+
  <tr>
+
    <td>Nuclease-free water to</td>
+
    <td>25 µl</td>
+
  </tr>
+
</table>
+
 
+
<table class ="customers">
+
  <tr>
+
    <td>1) 95°C </td>
+
    <td>30 sec</td>
+
  </tr>
+
  <tr>
+
    <td>2) 95°C </td>
+
    <td>30 sec</td>
+
  </tr>
+
  <tr>
+
    <td>3) 63°C</td>
+
    <td>1 min</td>
+
  </tr>
+
  <tr>
+
    <td>4) 68°C</td>
+
    <td>1 min/kb</td>
+
  </tr>
+
  <tr>
+
    <td>5) 2/30X</td>
+
    <td></td>
+
  </tr>
+
  <tr>
+
    <td>6) 68°C</td>
+
    <td>5 min</td>
+
  </tr>
+
  <tr>
+
    <td>7) 10°C </td>
+
    <td>forever</td>
+
  </tr>
+
</table>
+
 
+
          <br><br>
+
<li> Phusion polymerase (20µl reaction) Used for colony PCR for nmt1 and composite part : </li>
+
    <a class="bodyURLcolor" href="https://www.neb.com/protocols/1/01/01/pcr-protocol-m0530
+
">Protocol Here</a> <br>
+
        <b>Specifications</b> <br>
+
 
+
<table class ="customers">
+
  <tr>
+
    <td>15X Phusion HF or GC Buffer</td>
+
    <td> 4 µl</td>
+
  </tr>
+
  <tr>
+
    <td>10 mM dNTPs</td>
+
    <td>0.4 µl</td>
+
  </tr>
+
  <tr>
+
    <td>10 µM VF2</td>
+
    <td>1 µl</td>
+
  </tr>
+
  <tr>
+
    <td>10 µM VR</td>
+
    <td>1 µl</td>
+
  </tr>
+
  <tr>
+
    <td>Template DNA</td>
+
    <td>variable</td>
+
  </tr>
+
  <tr>
+
    <td>Phusion DNA Polymerase</td>
+
    <td>0.2 µl</td>
+
  </tr>
+
  <tr>
+
    <td>Nuclease-free water to</td>
+
    <td>20 µl</td>
+
  </tr>
+
</table>
+
 
+
<table class ="customers">
+
  <tr>
+
    <td>1) 95°C </td>
+
    <td>30 sec</td>
+
  </tr>
+
  <tr>
+
    <td>2) 98°C </td>
+
    <td>30 sec</td>
+
  </tr>
+
  <tr>
+
    <td>3) 63°C</td>
+
    <td>1 min</td>
+
  </tr>
+
  <tr>
+
    <td>4) 72°C</td>
+
    <td>1 min/kb</td>
+
  </tr>
+
  <tr>
+
    <td>5) 2/30X</td>
+
    <td></td>
+
  </tr>
+
  <tr>
+
    <td>6) 72°C</td>
+
    <td>5 min</td>
+
  </tr>
+
  <tr>
+
    <td>7) 10°C </td>
+
    <td>forever</td>
+
  </tr>
+
</table>
+
       
+
          <br><br>
+
<li>  5 PRIME HotMasterMix (50µl and 10µl reaction) Used for colony PCR for nmt1 and composite part : </li>
+
    <a class="bodyURLcolor" href="https://www.genetargetsolutions.com.au/wp-content/uploads/2016/06/5-Prime-Hot-Master-Mix-Manual.pdf
+
">Protocol Here</a> <br>
+
        <b>Specifications</b> <br><table class ="customers">
+
  <table class ="customers">
+
    <tr>
+
    <td>10 µM VF2</td>
+
    <td>0.4 µl</td>
+
  </tr>
+
  <tr>
+
    <td>10 µM VR</td>
+
    <td>0.4 µl</td>
+
  </tr>
+
  <tr>
+
    <td>Template DNA</td>
+
    <td>variable</td>
+
  </tr>
+
  <tr>
+
    <td>Phusion DNA Polymerase</td>
+
    <td>4 µl</td>
+
  </tr>
+
  <tr>
+
    <td>Nuclease-free water to</td>
+
    <td>10 µl</td>
+
  </tr>
+
</table>
+
 
+
<table class ="customers">
+
  <tr>
+
    <td>1) 92°C </td>
+
    <td>2 min</td>
+
  </tr>
+
  <tr>
+
    <td>2) 94°C </td>
+
    <td>20 sec</td>
+
  </tr>
+
  <tr>
+
    <td>3) 55°C</td>
+
    <td>30 sec</td>
+
  </tr>
+
  <tr>
+
    <td>4) 70°C</td>
+
    <td>1 min/kb</td>
+
  </tr>
+
  <tr>
+
    <td>5) 2/30X</td>
+
    <td></td>
+
  </tr>
+
  <tr>
+
    <td>6) 70°C</td>
+
    <td>5 min</td>
+
  </tr>
+
  <tr>
+
    <td>7) 10°C </td>
+
    <td>forever</td>
+
  </tr>
+
</table>
+
<br>
+
 
+
          Primers for amplification of composite part: <br>
+
          Fw: aaaaagaattcgcggccgcttc<br>
+
          Rev: aaaaactgagcggccgctactag
+
          <br><br>
+
 
+
</ul>
+
<br>
+
                        </div>
+
                    </div>
+
 
+
                  <div class="tab-pane fade active in" id="tab-item4">
+
                        <br> <br>
+
 
+
                        <div class="bootstrap-overrides">
+
                        For making a small 1% gel:
+
<ul>Weigh out 0.5 g of agarose and mix it with 50 ml of 1x TAE buffer in a 100 ml Erlenmeyer flask.</ul>
+
<ul> Dissolve the agarose by bringing the mixture to the boiling point in a microwave oven, followed by mixing (by swirling the flask). Repeat the heating and mixing until all the agarose has dissolved. </ul>
+
<ul>Cool the agarose solution to ~50 o C by leaving it on the bench for ~20 min (or you may accelerate the cooling by applying cold water from the tap to the outside of the flask). 
+
</ul>
+
<ul>Using gloves, add 5 l GelRed (10 000x). Swirl the flask gently to mix, try to avoid bubbles.</ul>
+
<ul>Pour the gel carefully into the mold. Bubbles may be removed/punctured by using a pipette tip. </ul> <br>
+
                        </div>
+
                    </div>
+
 
+
 
+
                    <div class="tab-pane fade active in" id="tab-item5">
+
                        <br> <br>
+
 
+
                        <div class="bootstrap-overrides">
+
                            <a class="bodyURLcolor" href="https://static.igem.org/mediawiki/2017/8/85/T--UiOslo_Norway--miniPrep.pdf"> Protocol </a> <br>
+
<b> Modifications: </b><br>
+
  <a name="french"></a> <br>
+
<ul>During the first attempt ethanol was not added to the PE buffer, which resulted in an unsuccessful miniprepl
+
</ul>
+
<ul>In the second attempt 72/4% ethanol was added, as opposed to the recommended 96-100%, resulting in a successful miniprep
+
</ul> <br> <br>
+
                        </div>
+
                    </div>
+
 
+
 
+
                    <div class="tab-pane fade active in" id="tab-item6">
+
                        <br> <br>
+
 
+
                        <div class="bootstrap-overrides">
+
                            <a class="bodyURLcolor" href="https://static.igem.org/mediawiki/2017/8/85/T--UiOslo_Norway--miniPrep.pdf"> Protocol </a> <br>
+
<b> Load cells into Cell: </b><br>
+
<ol>
+
  <li>Attach flow valve to big straight hole. Look at the nylon ball at he end and make sure it’s not distorted and misshapen. Make sure valve is closed. Attach dispenser + small tubing to the other hole (small and slanted).</li>
+
  <li>Examine the piston to make sure the o-rings are not nicked or distorted. Push piston into cell to line.</li>
+
  <li>Remove cap on other end.</li>
+
  <li>Pour sample into cell. Fill completely (1 mL for small cell).</li>
+
  <li>Put cap on the end. Firmly push the cap down – the best way is to use the heel of your hand and hit the cap hard until it’s completely seated.</li>
+
  <li>Turn setup over. Put in Press with piston up.</li>
+
  <li>Mini cell can be loaded in your hand, but the large cell is too heavy to load this way. There is a black 3 columned stand next to the Press (may be pushed back on the counter). Put the large cell upside down (piston down). Fill the cell the same way as the mini cell.</li>
+
</ol>
+
<b> Run: </b><br>
+
<ol>
+
  <li>Turn the Ratio Selector to Down position and turn the Pressure Increase control fully counterclockwise. The press needs to go down enough for the cell and extended piston.</li>
+
  <li>Pump on.</li>
+
  <li>Pressure Increase clockwise to 800 (turn knob) for mini-cell and 1000 for large cell.</li>
+
  <li>Pump off.</li>
+
  <li>For mini-cell turn Ratio Selector to medium.</li>
+
  <li>Put cell on the stand – make sure you can turn the flow valve on the cell, that it’s not blocked by anything. Make sure the cell is aligned properly so that the piston squarely strikes under the upper platen. Make sure the piston handles are perpendicular to the bar and it’s screws (if it’s not, as the piston is pushed down the handles will run into the screws and something will break). Swing the bar across the cell and make sure it is completely against the cell. If it’s not, the cell could pop off the stand when pressure is applied. If the screws on the bar get in the way – unscrew them enough to slide over cell and then tighten them).</li>
+
  <li>Pump on.</li>
+
  <li>When the pressure gets to 800, slowly release cells by tapping (not hitting) the flow valve (black handle) with a pen – cells must come out slowly, drop by drop (pump on still), 15 drops/min. Several labs feel that tapping with a pen gives a more consistent and reproducible release of the cells. The drop rate tends to increase near the end of the run. As you approach the end of the run, you may want to close the flow valve slightly by turning it clockwise before opening it again. Also, there might be air bubbles in the sample and these tend to squirt into the collection tube and if you aren’t careful where you hold your collection tube, you could lose your sample. Be very careful that the tubing is in your collection tube and not pointing towards your face. </li>
+
  <li>Pump off.</li>
+
  <li>Turn the Ratio Selector down.</li>
+
  <li>If you are done for the day, turn the Pressure Increase control fully counterclockwise. </li>
+
  <li>Pump on.</li>
+
  <li>Wash cell with H<sub>2</sub>O.</li>
+
</ol>
+
                        </div>
+
                    </div>
+
 
+
                     <div class="tab-pane fade active in" id="tab-item7">
+
 
                         <br> <br>
 
                         <br> <br>
  
Line 365: Line 101:
 
                             <div class="modelling-content">
 
                             <div class="modelling-content">
  
                                This experiment was conducted with the supervision of <a href="http://www.mn.uio.no/ibv/english/people/aca/awrobel/">Agnieszka Wrobel</a>. This procedure was done 2 times (First Experiment and Second Experiment). <br> <br>
 
 
<b>Materials</b>
 
<ul>
 
  <li> pASK-IBA3 sfGFP (Amp100) </li>
 
  <li> BL21 (DE3) Gold competent cells (50µl per sample) </li>
 
  <li> 1.5mL Microtubes </li>
 
  <li> SOC Media (950µL per sample) </li>
 
  <li> Petri plates w/ LB agar and ampicillin (100µg/ml) (2 per sample) </li>  <br>
 
  <li> Following buffers were made (and sterilized): </li>
 
  <ul>
 
        <li> Running buffer (per 1 L) (40 mM sodium phosphate (7,11g), 400 mM NaCl (23,4g), 20 mM imidazole (1,36g), pH 8.0 – made 2L </li>
 
        <li> Elution buffer (per 1 l)(40 mM sodium phosphate (7,11g), 400 mM NaCl (23,4g), 500 mM imidazole (34g), pH 8.0 – made 1L </li>
 
        <li> 1 M MgCl2 – used 20µl </li>
 
        <li> 1M MnCl2 - used 20 µL </li>
 
        <li> LB medium – 2L </li>
 
    </ul>
 
</ul> <br> <br>
 
<b>Equipment</b> <br>
 
<ul>
 
  <li>Floating Foam Tube Rack </li>
 
  <li>Ice & ice bucket </li>
 
  <li>Lab Timer </li>
 
  <li>42°C water bath </li>
 
  <li>37°C incubator </li>
 
  <li>Sterile spreader or glass beads </li>
 
  <li>Pipettes and tips (10µL, 20µL, 200µL, 1000µL) </li>
 
  <li>Microcentrifuge </li>
 
  <li>Pipetboy controller </li>
 
  <li>ÄKTA start (chromatography) </li>
 
  <li>Frac30 fraction collector </li>
 
  <li>French Pressure Cell </li>
 
</ul> <br> <br>
 
 
<h3>Method</h3> <br>
 
<b>Day 1</b> <br>
 
The transformation was done as given in the iGEM protocol for transformation (<a href="http://parts.igem.org/Help:Protocols/Transformation"> Single Tube Transformation Protocol </a>) with some modifications:
 
<ul>
 
  <li>The cells that we used were <i> E. coli </i> BL21 Gold </li>
 
  <li>The plasmid that we used to transform the cells was pASK-IBA3 sfGFP (Amp100) (glycerol stock 709) </li>
 
  <li>This plasmid was not resuspended as it was already dissolved in water. </li>
 
  <li>The incubation after transformation was done at 220rpm. </li>
 
  <li>We did not make the overnight culture and did not run the PCR (points 15. and 16. In the protocol). </li>
 
  <li>We let the cells grow on plates at 37ºC until the next day (19 plates in total). </li>
 
</ul> <br> <br>
 
<b> Day 2 </b> <br>
 
<ol>
 
  <li>We made 10 ml of an overnight culture of E.coli BL21 Gold (pASK-IBA3 sfGFP) Amp100 from each petri plate. </li>
 
  <li>LB medium for the next day was already prepared by the researches at the laboratory (2L). </li>
 
</ol> <br> <br>
 
 
<b> Day 3 </b>
 
<ol>
 
  <li>We inoculated 800 mL of LB/Amp100 (100µg/ml) with 5 mL of the overnight culture of E.coli BL21 (DE3) Gold (pASK-IBA3 sfGFP) Amp100 (x 2 bottles) </li>
 
  <li>We grew the cells until OD600=0.5 at 37ºC. This took us 3 hrs. </li>
 
  <li>We prepared 12% SDS-PAGE gel. </li>
 
  <li>Induce the cells with AHTC 0.2 µg/mL  </li>
 
  <li>Then we grew cells for another 2 hours at 30ºC </li>
 
  <li>We then spun the cells: 4500 rpm, 20 min, RT </li>
 
  <li>The pellet was resuspended in 20 mL running buffer </li>
 
  <li>The cells were frozen at -80ºC. </li>
 
</ol> <br> <br>
 
 
<b> Day 4 </b>
 
<ol>
 
  <li>Cells in the tubes were thawed. </li>
 
  <li>Protease inhibitor was added (1 tablet, thermos scientific – prod. 88266) </li>
 
  <li>1 mM MgCl2 and 1 mM MnCl2 was added as well (20 µL of 1M stock/ per 20 mL) </li>
 
  <li>20 µL of DNaseI solution (10mg/mL)  was added to each tube (10 µg/mL) </li>
 
  <li>200 µL of Lysozyme solution (10mg/mL) was added to each tube (0.1 mg/mL) </li>
 
  <li>French press: The samples were kept on ice at all times. We took out 30 µL of the protein sample to run it on a 12% SDS-Page gel. (<a href="#french"> Protocol for French Press </a> ) </li>
 
  <li>Ultracentrifuged 20 000 g, 35 min, 4 C. Balance tubes.  </li>
 
  <li>For affinity chromatography we used supernatant. We took out 30 µL of the protein sample to run it on a 12% SDS-Page gel. </li>
 
  <li>Filter sterilize the supernatant through the 0.2 uM filter before applying to the column. </li>
 
  <li>Affinity chromatography: </li>
 
  <ul>
 
      <li> <b> Running buffer: </b> </li>
 
      <ul>
 
          <li> 40 mM sodium phosphate </li>
 
          <li> 400 mM NaCl </li>
 
          <li> 20 mM imidazole </li>
 
          <li> pH 8.0 </li>
 
      </ul>
 
      <li> <b> Elution buffer: </b> </li>
 
      <ul>
 
          <li> 40 mM sodium phosphate </li>
 
          <li> 400 mM NaCl </li>
 
          <li> 500 mM imidazole </li>
 
          <li> pH 8.0 </li>
 
      </ul>
 
      <li> We first prepared the column His-trap-FF 5 mL. Then, the machine (ÄKTA system, GE Healthcare Life Sciences) for purification was prepared. </li>
 
 
  <li>Settings (UNICORN start 1.0) for sfGFP purification. Variable list. </li>
 
 
<br> <img src="https://static.igem.org/mediawiki/2017/a/aa/T--UiOslo_norway--Project-method_table.JPG" width="1,060" height="1,152"> <br>
 
 
      <li>The machine was then switched on and the affinity chromatography was conducted using UNICORN Control Software. </li>
 
    </ul>
 
    <li>After this, 30 µL of protein sample was taken before dialysis to run it on a 12% gel (SDS-PAGE). </li>
 
    <li>Dialysis was performed with 1L of 1xPBS buffer O/N at 4°C for 48 hours. We used water to wet the membrane tubing before starting the dialysis. </li>
 
</ol> <br> <br>
 
 
 
<br>
 
Solutions prepared for dialysis. <br> <br>
 
 
<b> Day 5 </b>
 
<ol>
 
    <li>We took 30 µL of our protein after dialysis for SDS-PAGE. </li>
 
    <li>Concentrating the protein: </li>
 
      <ul>
 
          <li>Vivaspin Protein Concentrator Spin Columns that we picked had molecular weight cut off 15 000 kDa since the size of our protein was 27 kDa. </li>
 
          <li>The columns were centrifuged for 15 min, 4000 rpm, 4°C. There was precipitation. </li>
 
          <li>Then we continued with the centrifugation until we had following final volumes: </li>
 
            <ul>
 
                <li>Column nr. 1: 1 mL (4x15min) </li>
 
                <li>Column nr. 2: 1.9 mL (5x15min) </li>
 
            </ul>
 
      </ul>
 
    <li>Measurement of the protein concentration: </li>
 
      <ul>
 
          <li>The protein was centrifuged at max speed, 5 min (each tube). </li>
 
          <li>We made 50 µL aliquots into Eppendorf tubes. 30 µL of our protein was taken for running on the gel. </li>
 
          <li>We had three different batches (1 from column nr. 1 and batch nr. 2 and nr. 3 from column nr. 2): </li>
 
            <ul>
 
                <li>Batch nr. 1: 1 mL of protein solution, added 166ul of 60% glycerol </li>
 
                <li>Batch nr. 2: 1 mL of protein solution, added 166ul of 60% glycerol </li>
 
                <li>Batch nr. 3:  877 µl of protein solution, added 146ul of 60% glycerol </li>
 
            </ul>
 
      </ul>
 
    <li>We did not have liquid nitrogen at that moment so we just froze the samples at -80ºC. </li>
 
</ol> <br> <br>
 
  
The entire procedure was repeated (Second Experiment) once more with some changes: <br>
+
                                <div class="padding-right padding-left">
<ul>
+
                                    The light from a light-emitting diode, LED for short, can be viewed by the human eye as monochromatic. This means it appears to only light up as one color. From theory we know that a LED cannot be monochromatic, thus proving one of the biggest differences between a LED and a laser. More importantly, the light from a LED is not coherent, meaning that the light waves do not have the same frequency. A LED loses little energy to heat as it applies most of its energy to light up the diode. This is a very useful property.<br><br>
    <li>We used 6L of the running buffer. </li>
+
                                </div>
    <li>Dialysis was done conducted. </li>
+
                                <div class="padding-right padding-left">
    <li>Aliquots in the end were not made. The samples were stored in cold room at 4ºC in test tubes. </li>
+
                                    To create a simple LED-circuit you only need a couple of components: a LED, a resistance, some wires, a circuit board and a voltage source.
    <li>SDS-PAGE was not conducted either. </li>
+
                                </div>
</ul> <br> <br>
+
  
 
                             </div>
 
                             </div>
  
                            <div class="modelling-picture">
+
                            <div class="modelling-picture">
 
                                 <figure>
 
                                 <figure>
                                <img class="team-picture" src="https://static.igem.org/mediawiki/2017/4/4b/T--UiOslo_norway--Project-method_fig1.jpg">
+
                                    <img class="modelling-picture" src = "https://static.igem.org/mediawiki/2017/5/52/T--UiOslo_norway--modelling_LEDcircuit.png">
                                <figcaption>Solutions prepared for dialysis</figcaption>
+
                                    <figcaption> Illustration of our LED circuit.  With a resistance, a LED and two power wires for both the positive and negative current. </figcaption>
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
Line 517: Line 120:
 
                     </div>
 
                     </div>
  
                    <div class="tab-pane fade active in" id="tab-item8">
 
                        <br> <br>
 
  
                        <div class="bootstrap-overrides">
 
                            <h2>Growth protocol: yeast with GFP strain 680 (nmt1-GFP-ppk18)</h2>
 
 
1. Wake the cells by plating them and incubate on 32 Celsius for 48 hours<br>
 
        -the yeast cells are stored and hibernating at -80 celcius<br>
 
2. Make a liquid culture with thiamine to supress the expression of GFP and let the cells further incubate on 25 Celsius for 24 hours on shaker.<br>
 
        - 50 mL EMM<br>
 
        - 25 uL thimamine<br>
 
3. Measure OD of the culture and check for contamination under a microscope.<br>
 
        -dilute the culture morning and night with more medium to make sure the cells don't starve. <br>
 
4. Spinn the culture to extract the thiamine from the solution, make a new liquid culture and incubate on 25 Celsius for another 24 hours on shaker.<br>
 
        -this will induce the expression of GFP<br>
 
5. Measure OD of the culture and check for contamination again.<br>
 
        -dilute the culture to be at around 0.05 OD as this gives the best results with the laser. 
 
                        </div>
 
                    </div>
 
  
                     <div class="tab-pane fade active in" id="tab-item9">
+
                     <div class="tab-pane fade" id="tab-item3">
                        <br> <br>
+
 
+
                        <div class="bootstrap-overrides">
+
                            96-Well Transformation Protocol: <br>
+
<a class="bodyURLcolor" href="http://parts.igem.org/Help:Protocols/Transformation#96-Well_Transformation_Protocol
+
"> Protocol </a> <br>
+
 
+
Plate reader protocol:<br>
+
<a class="bodyURLcolor" href="https://static.igem.org/mediawiki/2017/0/0b/T--UiOslo_Norway--InterLab_2017_Plate_Reader_Protocol.pdf">Protocol</a>
+
                        </div>
+
                    </div>
+
 
+
                    <div class="tab-pane fade active in" id="tab-item10">
+
 
                         <br> <br>
 
                         <br> <br>
  
Line 556: Line 128:
 
                             <div class="modelling-content">
 
                             <div class="modelling-content">
  
                                <h1>Information regarding how we made LED</h1>
+
 
                                 We used a blue LED lamp with the properties 20mA and 3.2V, a resistance of 1kΩ and a PHYWE power supply that allowed us to vary our voltage between 0-30V. The LED and the resistance were mounted to the circuit board using a soldering iron, before the wires were soldered to each side of the board (insert figure). <br>
+
                                 As one can see in the figure, our setup contains the following components: a LED-circuit as light source, lenses, two color filters, two mirrors, a spectrometer and a CCD-camera. The purpose of the lenses is to focus the light from the LED-circuit into a thin beam. This will make the LED-light more similar to a laser, and also increase the intensity of the light by concentrating it into a smaller radius. In order to make our light source act more like a laser, we need the light to have monochromatic properties. By using a blue color filter we can remove some of its spectrum, and obtain a correct wavelength for the GFP and yeast. It is worth mentioning that even though we use filters and lenses to focus the light, we still have to keep the LED at a maximum of 20V and hopefully the intensity is high enough for lasing to happen. Ideally, the mirrors we use should be 98% reflective and the last 2% should be emitted light that we can detect. We were not able to acquire mirrors of that sort, which is why our setup looks a bit different from that of a regular laser. The solution (both GFP or yeast) will be placed between the mirrors, in order to increase the effect of the light emitted from the solution. To be able to gather the light emitted from the GFP, which will be emitted in all directions, we place a big lense next to the mirror chamber. This lense will focus the light from the solution into a filter that removes the wavelengths that belongs to the LED, and by that we obtain the wavelengths we want to observe in a spectrometer or CCD-camera.
                                We made
+
                                <ul>
+
                                <li>One single blue LED </li>
+
                                <li>A double blue LED </li>
+
                                <li>One single green LED </li>
+
                                <li>One single red LED </li>
+
                                </ul>
+
 
                             </div>
 
                             </div>
 
 
                             <div class="modelling-picture">
 
                             <div class="modelling-picture">
  
 
                                 <figure>
 
                                 <figure>
                                <img class="modelling-picture rotate90" src = "https://static.igem.org/mediawiki/2017/4/41/T--UiOslo_norway--modelling_solderingLED.JPG">
+
                                    <img class="modelling-picture" src = "https://static.igem.org/mediawiki/2017/9/99/T--UiOslo_norway--modelling_set_up.png">
                                <figcaption> Hilde (physicist) making one of the LED circuitboards </figcaption>
+
                                    <figcaption> Illustration of our set up. From left to right we start with the LED-circuit, which emmits light that travels through a blue filter, then a couple of lenses to parallel and gather the light before it hits the sample. Here we have our two mirrors to amplify the signal from the sample, and further down the optical path we use a big lens to gather as much light as possible to concentrate it to our green filter before we use our spectrometer (and if needed a CCD-camera) to gather information about the light.</figcaption>
                                </figure>
+
                                <figure>
+
                                <img class="modelling-picture rotate90"  src = "https://static.igem.org/mediawiki/2017/7/70/T--UiOslo_norway--modelling_doubleLED.JPG">
+
                                <figcaption> One of the blue LED circuitboards. We wanted to make a double to test if we could increase the intensity transmitted on the sample </figcaption>
+
 
                                 </figure>
 
                                 </figure>
 
                             </div>
 
                             </div>
Line 581: Line 141:
 
                     </div>
 
                     </div>
  
                     <div class="tab-pane fade active in" id="tab-item11">
+
 
 +
                     <div class="tab-pane fade" id="tab-item4">
 
                         <br> <br>
 
                         <br> <br>
  
                         <div class="bootstrap-overrides-with-pictures">
+
                         <div class="bootstrap-overrides">
                            <div class="modelling-content">
+
 
+
                                To make sure we did not have any access equiptment we started at the very beginning to check that our LED made fluorescence, after that we started to optimize the light as we did not wanted to lose any light.
+
  
 +
                            <div class="padding-right padding-left">
 +
                                To be able to separate the fluoresence and the lasing with our setup we need to look at the spectre of the light waves emitted from the solution we are working with. The spectre of GFP is a broad peak as opposed to the laser, which has only one clear peak. When looking at our spectre we need to look for the clear peak, the laser peak. This will prove that we have succeeded in making the proteins lase, which will hopefully result in us proving the concept of a biolaser. <br>
 +
                                <br>
 +
                                Our CCD-camera do not have a lense, only a detector in place. In order to know if we will get an image we can see and work with, we need to calculate how big the detected image potentially will be. We are working with wavelengths that go roughly from 505 nm-515 nm, so we wish to calculate the angle between the two waves when they pass through the slit of the spectrometre. We also know that 4000 bars occupy a space of 2.5 cm, so we can calculate \(d\):
 
                             </div>
 
                             </div>
 +
                            <div class="padding-right padding-left">
 +
                                \begin{align}
 +
                                d = 2.5 \cdot 10^{-3} / 4000 = 6.25 \cdot 10^{-6} m \\
 +
                                \theta = sin^{-1} \left(\frac{505 \cdot 10^{-9}m}{6.25 \cdot 10^{-6}m}\right) = 0.081 rad \\
 +
                                \phi = sin^{-1} \left(\frac{515 \cdot 10^{-9} m}{6.25 \cdot 10^{-3}}\right) = 0.082 rad
 +
                                \end{align}
 +
                            </div>
 +
                            <div class="padding-right padding-left">
 +
                                The distance from the grid to the tip of the spectrometre (where we would out our camera) is 0.3m. So, the space between the two waves (and so, the size of our image) is:
 +
                            </div>
 +
                            <div class="padding-right padding-left">
 +
                                \begin{align}
 +
                                (0.082 - 0.081) \cdot 0.3m = 0.3mm
 +
                                \end{align}
 +
                            </div>
 +
                            <div class="padding-right padding-left">
 +
                                It is also worth mentioning that the angle at which the waves pass through the grid is more or less 5 degrees. To check if this works with our camera, we take the number of pixels pr 5 mm, and get:
 +
                            </div>
 +
                            <div class="padding-right padding-left">
 +
                                \begin{align}
 +
                                \frac{0.005 m}{750 px} = 6.67 \cdot 10^{-6} = 7 \mu m
 +
                                \end{align}
 +
                            </div>
 +
                            <div class="padding-right padding-left">
 +
                                Anything bigger than 7 \(\mu \) m should be easily observed, and our image should project at around 0.3 mm, so we are good to go! This is where the spectrometre and the CCD camera come into play. By knowing more or less the angle at which the spectre will be emitted we can place the camera where the spectre is sure to appear, and get a good measure of the spectre on screen.
  
                            <div class="modelling-picture">
 
                                <figure>
 
                                <img class="modelling-picture rotate90" src = "https://static.igem.org/mediawiki/2017/6/68/T--UiOslo_norway--modelling_physicist%40biolab.JPG">
 
                                <figcaption> Elisabeth (physicist) handling some frozen sfGFP. We wanted to have the sample in a container that would not interfere as much with the light. </figcaption>
 
                                </figure>
 
                                <figure>
 
                                <img  class="modelling-picture rotate90" src = "https://static.igem.org/mediawiki/2017/9/9d/T--UiOslo_norway--modelling_sGFPtubes.JPG">
 
                                <figcaption>Tubes of the sfGFP, kept on ice while we had them in the physics lab to make sure they would keep cool </figcaption>
 
                                </figure>
 
                               
 
                                <figure>
 
                                <img class="modelling-picture"  src = "https://static.igem.org/mediawiki/2017/f/f4/T--UiOslo_norway--modelling_lasersetup2.JPG">
 
                                <figcaption> One of the set ups where we tried to send the light in on the sample, diagonal to the optical path. </figcaption>
 
                                </figure>
 
                                <figure>
 
                <img class="modelling-picture"  src = "https://static.igem.org/mediawiki/2017/3/3a/T--UiOslo_norway--modelling_lasersetup2zoom.JPG">
 
                <figcaption> Another angle of the same set up as mentioned above, sending the light in diagonal at the sample to the optical path </figcaption>
 
            </figure>
 
           
 
            <figure>
 
                <img class="modelling-picture rotate180"  src = "https://static.igem.org/mediawiki/2017/6/6a/T--UiOslo_norway--modelling_lasersetup1.JPG">
 
                <figcaption> One of the inital set ups before we got the mirrors and filters from Thorlabs </figcaption>
 
            </figure>
 
           
 
            <figure>
 
                <img class="modelling-picture rotate90"  src = "https://static.igem.org/mediawiki/2017/6/61/T--UiOslo_norway--modelling_FinalLaserSetup1.JPG">
 
                <figcaption> Overview of our final set up from the end where you can see the spectrometer, CCD camera and the corresponding computer and lenses. </figcaption>
 
            </figure>
 
           
 
            <figure>
 
                <img class="modelling-picture rotate90"  src = "https://static.igem.org/mediawiki/2017/e/e5/T--UiOslo_norway--modelling_FinalLaserSetup2.JPG">
 
                <figcaption> How we aligned the mirrors, with the sample and lenses in the final set up. </figcaption>
 
            </figure>
 
           
 
            <figure>
 
                <img class="modelling-picture rotate90"  src = "https://static.igem.org/mediawiki/2017/5/55/T--UiOslo_norway--modelling_FinalLaserSetup3.JPG">
 
                <figcaption> A closer look at our final set up wiht focus on the sample and mirrors. </figcaption>
 
            </figure>
 
           
 
            <figure>
 
                <img class="modelling-picture rotate90"  src = "https://static.igem.org/mediawiki/2017/9/9b/T--UiOslo_norway--modelling_FinalLaserSetup4.JPG">
 
                <figcaption> Our LED, filter and lenses with our sample and mirrors behind in our final set up. </figcaption>
 
            </figure>
 
           
 
            <figure>
 
                <img class="modelling-picture rotate90"  src = "https://static.igem.org/mediawiki/2017/6/67/T--UiOslo_norway--modelling_FinalLaserSetup5.JPG">
 
                <figcaption> Another look at our final set up taken beside the spectrometer</figcaption>
 
            </figure>
 
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
 
 
  
 
                 </div>
 
                 </div>

Latest revision as of 03:49, 2 November 2017


Modelling



Electromagnetic radiation is energy travelling as waves or photons. This is not the time or the place to go into this discussion [1] but Einstein and Infeld said it well:

"But what is light really? Is it a wave or a shower of photons? There seems no likelihood for forming a consistent description of the phenomena of light by a choice of only one of the two languages. It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do."

- Albert Einstein and Leopold Infeld, The Evolution of Physics, pg. 262-263.



Light, or the visible light spectrum range from \( \in [400 - 700] \) nm in the electromagnetic radiation spectrum. Above, with higher wavelengths, you will find infrared radiation (also known as IR), and under you will find the ultraviolet radiation (also known as UV). We call it visible light due to the fact that our eyes can only "pick up" these wavelengths. For this project we will mostly focus on light \( \lambda \in [470,520] \) nm region.

You have probably heard that nothing can travel faster than light? But not that many (non-physicist) remembers what velocity light actually travels with. In most cases it's enough to say that light travels in \( \sim 3.0 \cdot 10^{8}\) m/s in vacuum or \( \sim 6.7 {\cdot 10^{8}} \)mph.

The given wavelength \(\lambda \) for a lightsource can be found using the following formula:
\begin{align} \lambda = d sin(\theta) \end{align}
Where \(d\) is the grid spacing and \(\theta\) is the angle.

Continuing this part we will refer to light as waves. As shown in the picture above, visible light ranges around ∈[400−700] nm. This is known as the wavelength of the light, and to label it we use the symbol \(\lambda\). To better understand the physics we will start by using the rainbow as an example. Most people have had the pleasure to see this magnificent phenomenon in their life. To understand what happens to the light, we need to introduce the term refraction index. In short terms, this means that light will behave differently in different mediums if hit with an angle different than zero from the optical path. For air, the refraction index is simply \(1\), but for water it is \(1.33\), both in vacuum. Using Snell’s law and the fact that the light travels from air to water we can see that the angle with which the light will be emitted can be found by:
\begin{align} n_1 sin\theta_1 = n_2 sin\theta_2 \end{align}

References

[1] if you want to read more about the waves vs. photons disussion
[2] Vistnes, A. (2016). Svingninger og Bølgers Fysikk. CreateSpace, An Amazone.com Company
The electromagnetic spectrum for the electromagnetic radiation with the corresponding wavelengths.


The light from a light-emitting diode, LED for short, can be viewed by the human eye as monochromatic. This means it appears to only light up as one color. From theory we know that a LED cannot be monochromatic, thus proving one of the biggest differences between a LED and a laser. More importantly, the light from a LED is not coherent, meaning that the light waves do not have the same frequency. A LED loses little energy to heat as it applies most of its energy to light up the diode. This is a very useful property.

To create a simple LED-circuit you only need a couple of components: a LED, a resistance, some wires, a circuit board and a voltage source.
Illustration of our LED circuit. With a resistance, a LED and two power wires for both the positive and negative current.


As one can see in the figure, our setup contains the following components: a LED-circuit as light source, lenses, two color filters, two mirrors, a spectrometer and a CCD-camera. The purpose of the lenses is to focus the light from the LED-circuit into a thin beam. This will make the LED-light more similar to a laser, and also increase the intensity of the light by concentrating it into a smaller radius. In order to make our light source act more like a laser, we need the light to have monochromatic properties. By using a blue color filter we can remove some of its spectrum, and obtain a correct wavelength for the GFP and yeast. It is worth mentioning that even though we use filters and lenses to focus the light, we still have to keep the LED at a maximum of 20V and hopefully the intensity is high enough for lasing to happen. Ideally, the mirrors we use should be 98% reflective and the last 2% should be emitted light that we can detect. We were not able to acquire mirrors of that sort, which is why our setup looks a bit different from that of a regular laser. The solution (both GFP or yeast) will be placed between the mirrors, in order to increase the effect of the light emitted from the solution. To be able to gather the light emitted from the GFP, which will be emitted in all directions, we place a big lense next to the mirror chamber. This lense will focus the light from the solution into a filter that removes the wavelengths that belongs to the LED, and by that we obtain the wavelengths we want to observe in a spectrometer or CCD-camera.
Illustration of our set up. From left to right we start with the LED-circuit, which emmits light that travels through a blue filter, then a couple of lenses to parallel and gather the light before it hits the sample. Here we have our two mirrors to amplify the signal from the sample, and further down the optical path we use a big lens to gather as much light as possible to concentrate it to our green filter before we use our spectrometer (and if needed a CCD-camera) to gather information about the light.


To be able to separate the fluoresence and the lasing with our setup we need to look at the spectre of the light waves emitted from the solution we are working with. The spectre of GFP is a broad peak as opposed to the laser, which has only one clear peak. When looking at our spectre we need to look for the clear peak, the laser peak. This will prove that we have succeeded in making the proteins lase, which will hopefully result in us proving the concept of a biolaser.

Our CCD-camera do not have a lense, only a detector in place. In order to know if we will get an image we can see and work with, we need to calculate how big the detected image potentially will be. We are working with wavelengths that go roughly from 505 nm-515 nm, so we wish to calculate the angle between the two waves when they pass through the slit of the spectrometre. We also know that 4000 bars occupy a space of 2.5 cm, so we can calculate \(d\):
\begin{align} d = 2.5 \cdot 10^{-3} / 4000 = 6.25 \cdot 10^{-6} m \\ \theta = sin^{-1} \left(\frac{505 \cdot 10^{-9}m}{6.25 \cdot 10^{-6}m}\right) = 0.081 rad \\ \phi = sin^{-1} \left(\frac{515 \cdot 10^{-9} m}{6.25 \cdot 10^{-3}}\right) = 0.082 rad \end{align}
The distance from the grid to the tip of the spectrometre (where we would out our camera) is 0.3m. So, the space between the two waves (and so, the size of our image) is:
\begin{align} (0.082 - 0.081) \cdot 0.3m = 0.3mm \end{align}
It is also worth mentioning that the angle at which the waves pass through the grid is more or less 5 degrees. To check if this works with our camera, we take the number of pixels pr 5 mm, and get:
\begin{align} \frac{0.005 m}{750 px} = 6.67 \cdot 10^{-6} = 7 \mu m \end{align}
Anything bigger than 7 \(\mu \) m should be easily observed, and our image should project at around 0.3 mm, so we are good to go! This is where the spectrometre and the CCD camera come into play. By knowing more or less the angle at which the spectre will be emitted we can place the camera where the spectre is sure to appear, and get a good measure of the spectre on screen.