(80 intermediate revisions by 4 users not shown) | |||
Line 7: | Line 7: | ||
<div class="clear"></div> | <div class="clear"></div> | ||
− | <div class="column full_size" style="background: #1c2922; margin-top: -40px; padding: | + | <div class="column full_size" style="background: #1c2922; margin-top: -40px; padding: 30px; color: #e8e6d1"> |
− | <h1 class="ITB_h1" | + | <h1 class="ITB_h1">Modelling</h1> |
<br /> | <br /> | ||
− | <p style="font-style: italic;14pt"><strong><a href="#quorum" style="color:white">Quorum Sensing</a> | + | <br><br><p style="font-style: italic;14pt"><strong><a href="#quorum" style="color:white">Quorum Sensing</a> |
</strong> / <a href="#petrans" style="color:white">PETase Transcription</a> / <a href="#ratePET" style="color:white">Rate of PET Degradation with Biofilm</a> / <a href="#degradation" style="color:white">Rate of PET Degradation without Biofilm </a></p> | </strong> / <a href="#petrans" style="color:white">PETase Transcription</a> / <a href="#ratePET" style="color:white">Rate of PET Degradation with Biofilm</a> / <a href="#degradation" style="color:white">Rate of PET Degradation without Biofilm </a></p> | ||
<div style="background: #e8e6d1; padding: 30px; color: #1c2922"> | <div style="background: #e8e6d1; padding: 30px; color: #1c2922"> | ||
− | <h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: | + | <h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 40px; text-align: center; color: #1c2922">Modelling Towards Precise Prediction of Synthetic Biology</h1> |
<p><justify>Mathematical modeling acts as engineering part in Synthetic Biology to link theoretical reaction mechanisms and lab work result. Our goal in modeling is to predict system behavior and give insight to the wet lab team. | <p><justify>Mathematical modeling acts as engineering part in Synthetic Biology to link theoretical reaction mechanisms and lab work result. Our goal in modeling is to predict system behavior and give insight to the wet lab team. | ||
Line 25: | Line 25: | ||
<h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="quorum">Quorum Sensing</h1> | <h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="quorum">Quorum Sensing</h1> | ||
<p></p> | <p></p> | ||
− | <p><justify>Quorum sensing mechanism was used to form biofilm | + | <p><justify>Quorum sensing mechanism was used to form biofilm from <i>E.coli</i> strain Top10, BL21 and DH5α. We modeled the growth curve of <i>E.coli</i> to determine when <i>E.coli</i> colony should be moved from to reaction flask that contains PET. We also modeled coupled ODEs to growth curve, AI-2 production that affects signaling, and biofilm formation. AI-2 production in <i>E.coli</i> was used as colony signal of quorum sensing until it reaches specific points and finally form biofilm that affected by its quorum sensing by AI-2 signaling. We use Hill kinetics function as our approach to model AI-2 production and biofilm formation. Based on our model, also confirmed through experiment, the inoculation time until <i>E.coli</i> reaches quorum sensing condition is <b>5-6 hours</b>. We also found other parameter that <b>affect biofilm formation significantly. Namely, specific growth rate (μ) and initial amount of bacteria that will be inoculated. This model will give</b> insight <b>to wetlab team</b> when constructing parts.</justify></p> |
<p>Assumption that we used in quorum sensing module is AI-2 production constant equals to AI-2 signaling constant.</p> | <p>Assumption that we used in quorum sensing module is AI-2 production constant equals to AI-2 signaling constant.</p> | ||
Line 33: | Line 33: | ||
<p>Growth curve :</p> | <p>Growth curve :</p> | ||
− | <p><center><img src="https://static.igem.org/mediawiki/2017/ | + | <p><center><img src="https://static.igem.org/mediawiki/2017/1/1d/T--ITB_Indonesia--QS1.gif" style="width: auto; height: auto;" /> |
</center></p> | </center></p> | ||
<p>AI-2 Production :</p> | <p>AI-2 Production :</p> | ||
− | <p><center><img src="https://static.igem.org/mediawiki/2017/ | + | <p><center><img src="https://static.igem.org/mediawiki/2017/3/33/T--ITB_Indonesia--QS2.gif" style="width: auto; height: auto;"></center></p> |
<p>Biofilm Formation :</p> | <p>Biofilm Formation :</p> | ||
− | <p><center><img src="https://static.igem.org/mediawiki/2017/ | + | <p><center><img src="https://static.igem.org/mediawiki/2017/c/c4/T--ITB_Indonesia--QS3.gif" style="width: auto; height: auto;" align="middle"/></center></p> |
− | Whereas X is bacterial growth ( | + | Whereas X is bacterial growth (OD588), AI2 is signaling production and B is biofilm (OD550). Parameters that we used are shown in Table 1. |
<br></br> | <br></br> | ||
Line 78: | Line 78: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>μ</td> | + | <td>μDH5alpha</td> |
− | <td>Specific growth rate</td> | + | <td>Specific growth rate of DH5alpha</td> |
− | <td>0. | + | <td>0.3</td> |
<td>h<sup>-1</sup></td> | <td>h<sup>-1</sup></td> | ||
<td>This study</td> | <td>This study</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>X<sub>max</sub></td> | + | <td>X<sub>max</sub>(DH5alpha)</td> |
− | <td>Maximum carrying capacity</td> | + | <td>Maximum carrying capacity DH5alpha</td> |
− | <td> | + | <td>2.504</td> |
− | <td>OD<sub> | + | <td>OD<sub>588</sub></td> |
+ | <td>This study</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>X<sub>max</sub>(BL21)</td> | ||
+ | <td>Maximum carrying capacity BL21</td> | ||
+ | <td>2.645</td> | ||
+ | <td>OD<sub>588</sub></td> | ||
<td>This study</td> | <td>This study</td> | ||
</tr> | </tr> | ||
Line 95: | Line 102: | ||
<td>Signaling constant</td> | <td>Signaling constant</td> | ||
<td>2.5 x 10<sup>-3</sup></td> | <td>2.5 x 10<sup>-3</sup></td> | ||
− | <td> | + | <td>OD588</sup></td> |
<td>This study</td> | <td>This study</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>μ</td> | + | <td>μBL21</td> |
− | <td>Specific growth rate</td> | + | <td>Specific growth rate of BL21</td> |
− | <td>0. | + | <td>0.32</td> |
<td>h<sup>-1</sup></td> | <td>h<sup>-1</sup></td> | ||
<td>This study</td> | <td>This study</td> | ||
Line 107: | Line 114: | ||
<tr> | <tr> | ||
<td>k<sub>Q</sub></td> | <td>k<sub>Q</sub></td> | ||
− | <td>Monod constant</td> | + | <td>Monod constant for AI2 production</td> |
− | <td> | + | <td>2.16 x 10<sup>-3</sup></td> |
− | <td> | + | <td>OD588</td> |
<td>This study</td> | <td>This study</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>AI2<sub>max</sub></td> | <td>AI2<sub>max</sub></td> | ||
− | <td> | + | <td>Maximum AI2 production</td> |
− | <td>0. | + | <td>0.088</td> |
<td>h<sup>-1</sup></td> | <td>h<sup>-1</sup></td> | ||
<td>This study</td> | <td>This study</td> | ||
Line 121: | Line 128: | ||
<tr> | <tr> | ||
<td>c<sub>S</sub></td> | <td>c<sub>S</sub></td> | ||
− | <td> | + | <td>Biofilm growth constant</td> |
− | <td> | + | <td>6.6x10<sup>-2</sup></td> |
<td>h<sup>-1</sup></td> | <td>h<sup>-1</sup></td> | ||
<td>This study</td> | <td>This study</td> | ||
Line 128: | Line 135: | ||
<tr> | <tr> | ||
<td>k<sub>B</sub></td> | <td>k<sub>B</sub></td> | ||
− | <td> | + | <td>Monod constant biofilm</td> |
− | <td> | + | <td>12.6</td> |
<td>h<sup>-1</sup></td> | <td>h<sup>-1</sup></td> | ||
<td>This study</td> | <td>This study</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>B<sub>max</sub></td> | + | <td>B<sub>max BL21</sub></td> |
− | <td>Biofilm carrying capacity</td> | + | <td>Biofilm carrying capacity BL21</td> |
− | <td>0. | + | <td>0.5</td> |
− | <td> | + | <td>OD550</td> |
+ | <td>This study</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>B<sub>max DH5alpha</sub></td> | ||
+ | <td>Biofilm carrying capacity DH5alpha</td> | ||
+ | <td>0.34</td> | ||
+ | <td>OD550</td> | ||
<td>This study</td> | <td>This study</td> | ||
</tr> | </tr> | ||
Line 143: | Line 157: | ||
</body> | </body> | ||
+ | |||
+ | <p>Next, we attempted to verify our model using data directly acquired from our Wetlab team. Our wetlab team supplied data of cells and biofilm formation growth curve. Model and data for growth curve and biofilm formation for two different strain of <i>E. coli</i> can be simultaneously seen in Fig 1 and Fig 2. As expected, μ and initial amount of bacteria has important effect to biofilm formation. <i>E. coli</i> strain BL21, which <b>has greater μ than DH5alpha, also has higher rate of biofilm growth than DH5alpha. This information is very precious for the wetlab team to develop the right strain to be engineered.</b></p><br> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/d/dc/T--ITB_Indonesia--dh5.jpeg" style="width: auto; height: auto;" align="middle"/></center></p><br> | ||
+ | <p><center>Fig. 1 Model and data from growth curve and biofilm formation of DH5alpha<p></center><br> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/9/92/T--ITB_Indonesia--bl21.jpeg | ||
+ | " style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | <p><center>Fig. 2 Model and data from growth curve and biofilm formation of BL21</center><br> | ||
<h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="petrans">PETase Transcription</h1> | <h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="petrans">PETase Transcription</h1> | ||
− | <p><justify>After | + | <p><justify>After the biofilm is formed, we can focus on the mRNA transcription from DNA and mRNA translation to PETase process that will lead to PETase production. </justify> |
− | + | Transcription process of PETase is illustrated in Fig. 3: | |
− | <p><center><img src="https://static.igem.org/mediawiki/2017/ | + | <p><center><img src="https://static.igem.org/mediawiki/2017/0/0f/T--ITB_Indonesia--PP1.gif" style="width: auto; height: auto;" align="middle"/></center></p> |
+ | <p><center> Fig. 3. Reaction pathway of mRNA translation into PETase</center> </p><br> | ||
− | <justify>We | + | <justify>We will construct a model based on the final project written by Silmi (2014) and thesis by Talib (2016). Define M(t) and C(t) as functions versus time (in further discussions will be just written as M and C). Before going to differential equations that illustrate rate of mRNA (symbolized as M) and PETase production (symbolized by C), we made several assumptions for the model:</justify> |
<p>1. No inclusion body is produced during the transcription. Consecutively, there’s also no TetR produced during the transcription.</p> | <p>1. No inclusion body is produced during the transcription. Consecutively, there’s also no TetR produced during the transcription.</p> | ||
Line 158: | Line 182: | ||
There, the differential equations of each parameter obtained through the analysis of mass balance are : | There, the differential equations of each parameter obtained through the analysis of mass balance are : | ||
− | <p><center><img src="https://static.igem.org/mediawiki/2017/ | + | <p><center><img src="https://static.igem.org/mediawiki/2017/d/d9/T--ITB_Indonesia--dM.gif" style="width: auto; height: auto;" align="middle"/></center></p> |
− | <p><center><img src="https://static.igem.org/mediawiki/2017/9/ | + | <p><center><img src="https://static.igem.org/mediawiki/2017/9/9f/T--ITB_Indonesia--dC.gif" style="width: auto; height: auto;" align="middle"/></center></p> |
− | + | A thorough analysis provide us with the critical point of the production, which is reached when | |
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/a/a0/T--ITB_Indonesia--MC.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
− | <justify>Each of the differential equation is solved analytically using | + | We choose α<sub>m</sub> = 0.011 μmin<sup>-1</sup>, α<sub>c</sub>= 0.001 μmin<sup>-1</sup>, γ<sub>m</sub>= 0.009 μ<sup>-1</sup>, γ<sub>c</sub>= 0.04 μmin<sup>-1</sup>. Using MATLAB, we obtain the graph plot as shown below: |
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/6/6c/T--ITB_Indonesia--PETaseprod.png" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | <p><center> Fig. 4. PETase production from mRNA transcription </center> </p><br> | ||
+ | |||
+ | |||
+ | <justify>Each of the differential equation is solved analytically using MATLAB and then plotted in graph as follows.</justify> | ||
+ | |||
+ | <justify>Through the graph, for M(0) = 0.05 and C(0) = 0, we obtain at the steady state, the rate of production of PETase is <b>0.0305 mg/(liter∙h) which attained at approximately 600/60 = 10 h</b>. We will use this as the initial value of PETase in PET degradation.</justify> | ||
</p> | </p> | ||
Line 173: | Line 206: | ||
<p>Based on the <a href="https://2017.igem.org/Team:ITB_Indonesia/Design">design</a>, assumptions that we used are :</p> | <p>Based on the <a href="https://2017.igem.org/Team:ITB_Indonesia/Design">design</a>, assumptions that we used are :</p> | ||
<p>1. Biofilm covered <i>E. coli</i> from the effect of nutrient solution, however, the bottom section of E. coli is in contact with PET.</p> | <p>1. Biofilm covered <i>E. coli</i> from the effect of nutrient solution, however, the bottom section of E. coli is in contact with PET.</p> | ||
− | <p>2. </p> | + | <p>2. Surface of PET is smooth and assume uniform at each point.</p> |
− | <p><justify>Enzymatic reaction of PETase is assumed to obey two mechanisms reaction, i.e. Langmuir adsorption isotherm that applied in hydrolysis reaction that using Michaelis-Menten kinetics. One of the main reason for not applying all of mechanism Michaelis Menten kinetics in PET degradation mechanism was the involvement of heterogeneous reaction during hydrolysis []. Based on Langmuir adsorption isotherm, we can derive mathematical expression that implemented to Michaelis Menten kinetics. </justify> | + | |
+ | Pathway of PET degradation in engineered <i>E. coli</i> from MetaCyc is shown in Fig. 5.<br> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/8/80/T--ITB_Indonesia--pathway.gif" style="width: auto; height: auto;" align="middle"/></center></p><br> | ||
+ | <p><center> Fig. 5. Degradation pathway of PET in engineered <i>E. coli</i></center> </p> | ||
+ | Our modelling does not look all reaction in pathway, but only PET degradation into ethylene terephtalate and 4-[(2-hydroxyethoxy)carbonyl]benzoate. | ||
+ | |||
+ | <p><justify>Enzymatic reaction of PETase is thermodynamically favored (ΔG = -37.87 kcal/mol), so PET degradation will occur spontaneously without any trigger substance. PETase reaction is assumed to obey two mechanisms reaction, i.e. Langmuir adsorption isotherm that applied in hydrolysis reaction that using Michaelis-Menten kinetics. One of the main reason for not applying all of mechanism Michaelis Menten kinetics in PET degradation mechanism was the involvement of heterogeneous reaction during hydrolysis [TJUSLS iGEM 2016 Team, 2016]. Based on Langmuir adsorption isotherm, we can derive mathematical expression that implemented to Michaelis Menten kinetics. </justify> | ||
Langmuir adsorption isotherm equation is :</p> | Langmuir adsorption isotherm equation is :</p> | ||
− | <p><center><img src="https://static.igem.org/mediawiki/2017/f/ff/T--ITB_Indonesia--Lang1.gif" style="width: auto; height: auto;" align="middle"/></center></p> | + | <p><center><img src="https://static.igem.org/mediawiki/2017/f/ff/T--ITB_Indonesia--Lang1.gif" style="width: auto; height: auto;" align="middle"/>... (1)</center></p> |
− | <p><justify>Whereas q is quality of PET enzyme adsorption by unit quality PET, g; | + | <p><justify>Whereas q is quality of PET enzyme adsorption by unit quality PET, g; q<sub>m</sub> is the maximum adsorption of PET enzyme by unit quality PET, g; K<sub>a</sub> is the adsorption dissociation constant, mL/g; E<sub>f</sub> is the concentration of free PET enzyme in the solution, g/mL.</justify></p> |
− | <p>Corellation of q and | + | <p>Corellation of q and q<sub>m</sub>,</p> |
<p><center><img src="https://static.igem.org/mediawiki/2017/b/b6/T--ITB_Indonesia--Lang2.gif" style="width: auto; height: auto;" align="middle"/></center></p> | <p><center><img src="https://static.igem.org/mediawiki/2017/b/b6/T--ITB_Indonesia--Lang2.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
− | <p>So equation 1 can be rewritten as :</p> | + | <p>So equation (1) can be rewritten as :</p> |
− | <p><center><img src="https://static.igem.org/mediawiki/2017/a/a2/T--ITB_Indonesia--Lang3.gif" style="width: auto; height: auto;" align="middle"/></center></p> | + | <p><center><img src="https://static.igem.org/mediawiki/2017/a/a2/T--ITB_Indonesia--Lang3.gif" style="width: auto; height: auto;" align="middle"/>... (2)</center></p> |
− | <p>Based on assumptions that used in [], we get :</p> | + | <p>Based on assumptions that used in [TJUSLS iGEM 2016 Team, 2016], we get :</p> |
− | <p><center><img src="https://static.igem.org/mediawiki/2017/d/d3/T--ITB_Indonesia--Lang4.gif" style="width: auto; height: auto;" align="middle"/></center></p> | + | <p><center><img src="https://static.igem.org/mediawiki/2017/d/d3/T--ITB_Indonesia--Lang4.gif" style="width: auto; height: auto;" align="middle"/>... (3)</center></p> |
<p><justify>K is a constant connecting the three characters and A represents the area of the PET film. Langmuir adsorption equation linked with the second step of hydrolysis reaction process, here, the equation above is the key to connect the two step, and the value of the PET•S will be used in the hydrolysis reaction.</justify></p> | <p><justify>K is a constant connecting the three characters and A represents the area of the PET film. Langmuir adsorption equation linked with the second step of hydrolysis reaction process, here, the equation above is the key to connect the two step, and the value of the PET•S will be used in the hydrolysis reaction.</justify></p> | ||
− | <p>Reaction mechanisms of PET degradation are stated below.</p> | + | <p>Reaction mechanisms of PET degradation are stated below [TJUSLS iGEM 2016 Team, 2016].</p> |
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/f/fb/T--ITB_Indonesia--Reaksi1.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/7/79/T--ITB_Indonesia--Reaksi2.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/2/28/T--ITB_Indonesia--Reaksi3.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | <p>(E stands for PETase)</p> | ||
<p>We can derive differential equations that we need from reaction mechanisms. Here is coupled ODEs that we used to determine rate of PETase formation and degradation of PET with biofilm forming based on assumptions that stated above.</p> | <p>We can derive differential equations that we need from reaction mechanisms. Here is coupled ODEs that we used to determine rate of PETase formation and degradation of PET with biofilm forming based on assumptions that stated above.</p> | ||
− | <p><center><img src="https://static.igem.org/mediawiki/2017/a/af/T--ITB_Indonesia--ODE1re.gif" style="width: auto; height: auto;" align="middle"/></center></p> | + | <p><center><img src="https://static.igem.org/mediawiki/2017/a/af/T--ITB_Indonesia--ODE1re.gif" style="width: auto; height: auto;" align="middle"/>... (4)</center></p> |
− | <p><center><img src="https://static.igem.org/mediawiki/2017/f/f1/T--ITB_Indonesia--ODE2re.gif" style="width: auto; height: auto;" align="middle"/></center></p> | + | <p><center><img src="https://static.igem.org/mediawiki/2017/f/f1/T--ITB_Indonesia--ODE2re.gif" style="width: auto; height: auto;" align="middle"/>... (5)</center></p> |
− | <p><center><img src="https://static.igem.org/mediawiki/2017/e/e4/T--ITB_Indonesia--ODE3re.gif" style="width: auto; height: auto;" align="middle"/></center></p> | + | <p><center><img src="https://static.igem.org/mediawiki/2017/e/e4/T--ITB_Indonesia--ODE3re.gif" style="width: auto; height: auto;" align="middle"/>... (6)</center></p> |
− | <p>Whereas | + | <p>Whereas C, T, and S consecutively denotes the amount of PET, PET∙E, and PETE produced, E as PETase, and P is ethylene terephtalate (the product from PET degradation by PETase), each against time.</p> |
− | <p><center><img src="https://static.igem.org/mediawiki/2017/1/11/T--ITB_Indonesia--B.gif" style="width: auto; height: auto;" align="middle"/></center></p> | + | <p>Hence, we can substitute T from equation (3) into equation (5). Thus, we have</p> |
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/b/b7/T--ITB_Indonesia--2ODE1re.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/f/fe/T--ITB_Indonesia--2ODE2re.gif" style="width: auto; height: auto;" align="middle"/>... (7)</center></p> | ||
+ | |||
+ | <p>Now, let’s analyze the parameters of the preceding equation. It’s obvious that K, k<sub>3</sub>, K<sub>a</sub> are constant in the system, while, in a fixed experiment, the area of the PET sheet and the concentration of the PET enzyme are unchangeable according to hypothesizes above, so the right part of the equation above is a constant, B.</p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/1/11/T--ITB_Indonesia--B.gif" style="width: auto; height: auto;" align="middle"/>... (8)</center></p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/a/ad/T--ITB_Indonesia--2ODE3re.gif" style="width: auto; height: auto;" align="middle"/>... (9)</center></p> | ||
+ | |||
+ | <p>Reaction is occured until value of degradation rate of PET and PETase equals to zero, so equation (9) becomes :</p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/5/59/T--ITB_Indonesia--PETEFinal3.gif" style="width: auto; height: auto;" align="middle"/>... (10)</center></p> | ||
+ | |||
+ | <p>Insert equation (10) to equation (5), thus we have</p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/3/35/T--ITB_Indonesia--dPdt1.gif" style="width: auto; height: auto;" align="middle"/>... (11)</center></p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/7/70/T--ITB_Indonesia--dPdt2.gif" style="width: auto; height: auto;" align="middle"/>... (12)</center></p> | ||
+ | |||
+ | <p>The above differential equation is the final rate equation of the whole reaction process, and from the equation (12) we obtained that the reaction rate is constant, determined from the parameter D. And the reaction rate constants differs at varying PET concentrations and PET films.</p> | ||
+ | |||
+ | <p>However, in real process, the reaction rate will be decreased as the PET decreased during the reaction. So, the damping factor It included in the equation to contemplate the effect of substrate reduction.</p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/c/ce/T--ITB_Indonesia--Bmodif.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | |||
+ | <p>To simplify the equations, define the constant K<sub>0</sub> below</p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/8/81/T--ITB_Indonesia--K0.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | |||
+ | <p>Thus, we have</p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/7/71/T--ITB_Indonesia--Dmodif.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | |||
+ | <br>and the differential equations become</br> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/a/af/T--ITB_Indonesia--dSdt.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | |||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/6/67/T--ITB_Indonesia--dPdt.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | |||
+ | <p>Using Maple18, we make a plot graph of ethylene terephtalate production to observe the reaction rate. We have the parameters value of the equation as follows:</p> | ||
− | |||
<p><center>Table 2. Parameters for rate of PET degradation with biofilm modelling module</center></p> | <p><center>Table 2. Parameters for rate of PET degradation with biofilm modelling module</center></p> | ||
<head> | <head> | ||
Line 235: | Line 321: | ||
<th>Parameter</th> | <th>Parameter</th> | ||
<th>Definition</th> | <th>Definition</th> | ||
− | <th> | + | <th>Units</th> |
− | <th> | + | <th>Values</th> |
<th>References</th> | <th>References</th> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td> | + | <td>K<sub>0</sub></td> |
− | + | <td>A constant of the equation, K<sub>0</sub> = Kk<sub>5</sub>k<sub>3</sub>/k<sub>4</sub></td> | |
− | <td>0 | + | <td>mg/(mL.h.mm<sup>2</sup>)</td> |
− | <td>h<sup> | + | <td>1.43</td> |
− | <td> | + | <td>TJUSLS (2016)</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td> | + | <td>A</td> |
− | <td> | + | <td>The area of the PET film</td> |
− | <td> | + | <td>mm<sup>2</sup></td> |
− | <td> | + | <td>28.27</td> |
− | <td> | + | <td>TJUSLS (2016)</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td> | + | <td>K<sub>a</sub></td> |
− | <td> | + | <td>Adsorption constant of the PET enzyme</td> |
− | <td> | + | <td>mL/mg</td> |
− | <td> | + | <td>7.89 x 10<sup>-2</sup></td> |
− | <td> | + | <td>TJUSLS (2016)</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td> | + | <td>I</td> |
− | <td> | + | <td>The damping factor for the adsorption process of all reaction products</td> |
− | <td> | + | <td>mg/(mL.h)</td> |
− | <td> | + | <td>2.15 x 10<sup>-4</sup></td> |
− | <td> | + | <td>TJUSLS (2016)</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td> | + | <td>E<sub>0</sub></td> |
− | + | <td>The initial PET enzyme concentration</td> | |
− | + | <td>mg/mL</td> | |
− | + | <td>0.0305</td> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <td> | + | |
− | <td> | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <td>0. | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<td>This study</td> | <td>This study</td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
+ | <p>From the parameter values provided, a graph of ethylene terephtalate production has been plotted in Maple18 for the initial amount of ethylene terephtalate being zero as shown below:</p> | ||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/1/1e/T--ITB_Indonesia--ETP.jpeg" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | <p><center> Fig. 6. Ethylene terephtalate production versus time (t, in hours)</center> </p><br> | ||
+ | <p>Notice that the ethylene terephtalate production stops after approximately <b>18-20 hours</b> before starting to decrease. This means we can collect data for <b>PET degradation after 18-20 hours.</b> Data that we have can be expanded to design PET degradation bioreactor that we have design <a href="https://2017.igem.org/Team:ITB_Indonesia/HP/Gold_Integrated">here</a></b></p><br> | ||
+ | |||
</body> | </body> | ||
Line 311: | Line 374: | ||
<h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="degradation">Rate of PET Degradation without Biofilm</h1> | <h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="degradation">Rate of PET Degradation without Biofilm</h1> | ||
− | <p>Comparing to degradation rate of PET with biofilm, PETase that can break down PET must be diffused into nutrient broth so surface contacting is occured, based on our <a href="https://2017.igem.org/Team:ITB_Indonesia/Design">design</a>. | + | <p>Comparing to degradation rate of PET with biofilm, PETase that can break down PET must be diffused into nutrient broth so surface contacting is occured, based on our <a href="https://2017.igem.org/Team:ITB_Indonesia/Design">design</a>. Molecular weight of PETase is 30,247 g/mol, that relatively larger than oxygen (16 g/mol) or albumin (5,200 g/mol). Larger molecular weight makes value of diffusivity coefficient smaller. After diffusion, enzyme must create contact to PET surface so PET degradation will occur. Modeling of PETase diffusion and <i>E. coli</i> motility should modeled as stochastic model like Brownian motion, and we lack of data that we need. |
+ | Biofilm that we used as media of <i>E. coli</i> to attach at PET surface based on our <a href="https://2017.igem.org/Team:ITB_Indonesia/Design">design</a> should be evaluated as channel to PETase can flow because molecular weight relatively large. Large molecular weight also makes diffusion of PETase will occur in slow rate. So, there is possibility that biofilm can slower PET degradation. | ||
+ | But, constraint that we have explained above enable us to make some hypothesis. Our hypothesis are :</p><br> | ||
+ | <p><center><b>1. PET degradation without biofilm is slower than PET degradation with biofilm, with assumption no biofilm at bottom section of surface that contact with PETase.</center></b></p><br> | ||
+ | <p><center><b>2. PET degradation without biofilm is faster than PET degradation with biofilm, because biofilm cover all contact surface of PET, and PETase can't use it as channel to degrade PET</center></b></p><br> | ||
+ | <a href="https://2017.igem.org/Team:ITB_Indonesia/Results">Results</a> from our wetlab team has <b>proven our hypothesis (2) is true</b> and this explain how <b>mathematical model can be used as tool to assist wetlab team make decision and predict final result</b> of the experiment. </p> | ||
− | <h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="degradation">References</h1> | + | <h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="conclusion">Conclusions</h1> |
+ | <p>To sum up, we made several conclusions regarding the modeling:</p> | ||
+ | <b><ol> | ||
+ | <li>We choose to use BL21 strain of Eschericia coli as the host.</li> | ||
+ | <li>The maximum theoretical steady rate of PETase production is 0.0305 mg/(liter.h). The steady state attained in 10 h.</li> | ||
+ | <li>PETase degradation occurs in 18-20 h.</li> | ||
+ | </b></ol> | ||
+ | <h1 class="ITB_h1" style="padding-bottom: 30px; margin-bottom: 30px; border-bottom: 2px solid #1c2922 !important; padding-left: 30px; font-size: 30px; text-align: justify; color: #1c2922" id="reference">References</h1> | ||
<p>Klipp, Edda, Wolfram Liebermeister, Christoph Wierling, Axel Kowald,Hans Lehrach, and Ralf Herwig. | <p>Klipp, Edda, Wolfram Liebermeister, Christoph Wierling, Axel Kowald,Hans Lehrach, and Ralf Herwig. | ||
− | (2009): Systems Biology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.<br> | + | (2009): <i>Systems Biology</i>. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.<br> |
− | Rachmananda, Faisal (2015): Models of PET Degradation and Conversion by E-Coli Bacteria, | + | MetaCyc Reaction: 3.1.1.101. Retrieved November 01, 2017, from https://biocyc.org/META/NEW-IMAGE?type=REACTION&object=RXN-17825<br> |
+ | Rachmananda, Faisal (2015): <i>Models of PET Degradation and Conversion by E-Coli Bacteria</i>, | ||
Bachelor’s Program Final Project, Institut Teknologi Bandung.<br> | Bachelor’s Program Final Project, Institut Teknologi Bandung.<br> | ||
− | Shuler, Michael L., Fikret Kargi (2002): Bioprocess Engineering Basic Concepts. 2nd ed. New Jersey: | + | Shuler, Michael L., Fikret Kargi (2002): <i>Bioprocess Engineering Basic Concepts</i>. 2nd ed. New Jersey: |
Prentice Hall PTR. <br> | Prentice Hall PTR. <br> | ||
− | Silmi, Melia (2015): Models of LC-Cutinase Enzyme Regulation with Feedback System in PET | + | Shen, Y., Zhao, J., De La Fuente-núñez, C., Wang, Z., Hancock, R. E., Roberts, C. R., ... & Wang, Q. (2016). Experimental and |
− | Biodegradation Process, Bachelor’s Program Final Project, Institut Teknologi Bandung.<br> | + | theoretical investigation of multispecies oral biofilm resistance to chlorhexidine treatment. Scientific reports, 6, 27537.<br> |
− | Talib, T. (2016): Modelling Biodegradation of PET Involving The Growth of Factor E-Coli Bacteria | + | Silmi, Melia (2015): <i>Models of LC-Cutinase Enzyme Regulation with Feedback System in PET |
− | Measure, Master’s Program Thesis, Institut Teknologi Bandung.<br> | + | Biodegradation Process</i>, Bachelor’s Program Final Project, Institut Teknologi Bandung.<br> |
+ | Talib, T. (2016): <i>Modelling Biodegradation of PET Involving The Growth of Factor E-Coli Bacteria | ||
+ | Measure</i>, Master’s Program Thesis, Institut Teknologi Bandung.<br> | ||
+ | TJUSLS iGEM 2016 team. Retrieved November 01, 2017, from https://2016.igem.org/Team:TJUSLS_China/Modeling | ||
+ | |||
+ | <br> | ||
</p> | </p> |
Latest revision as of 03:53, 2 November 2017
Modelling
Quorum Sensing / PETase Transcription / Rate of PET Degradation with Biofilm / Rate of PET Degradation without Biofilm
Modelling Towards Precise Prediction of Synthetic Biology
1) quorum sensing time to predict when biofilm formed 2) the rate of PETase production 3) PET hydrolysis by PETase with and without biofilm.
Quorum Sensing
Assumption that we used in quorum sensing module is AI-2 production constant equals to AI-2 signaling constant.
Here ODEs that we used :
Growth curve :
AI-2 Production :
Biofilm Formation :
Parameter | Definition | Value | Dimension | References |
---|---|---|---|---|
μDH5alpha | Specific growth rate of DH5alpha | 0.3 | h-1 | This study |
Xmax(DH5alpha) | Maximum carrying capacity DH5alpha | 2.504 | OD588 | This study |
Xmax(BL21) | Maximum carrying capacity BL21 | 2.645 | OD588 | This study |
cA | Signaling constant | 2.5 x 10-3 | OD588 | This study |
μBL21 | Specific growth rate of BL21 | 0.32 | h-1 | This study |
kQ | Monod constant for AI2 production | 2.16 x 10-3 | OD588 | This study |
AI2max | Maximum AI2 production | 0.088 | h-1 | This study |
cS | Biofilm growth constant | 6.6x10-2 | h-1 | This study |
kB | Monod constant biofilm | 12.6 | h-1 | This study |
Bmax BL21 | Biofilm carrying capacity BL21 | 0.5 | OD550 | This study |
Bmax DH5alpha | Biofilm carrying capacity DH5alpha | 0.34 | OD550 | This study |
Next, we attempted to verify our model using data directly acquired from our Wetlab team. Our wetlab team supplied data of cells and biofilm formation growth curve. Model and data for growth curve and biofilm formation for two different strain of E. coli can be simultaneously seen in Fig 1 and Fig 2. As expected, μ and initial amount of bacteria has important effect to biofilm formation. E. coli strain BL21, which has greater μ than DH5alpha, also has higher rate of biofilm growth than DH5alpha. This information is very precious for the wetlab team to develop the right strain to be engineered.
PETase Transcription
1. No inclusion body is produced during the transcription. Consecutively, there’s also no TetR produced during the transcription.
2. Initally, there are 0.05 μM of mRNA and zero amount of PETase.
There, the differential equations of each parameter obtained through the analysis of mass balance are :Rate of PET Degradation with Biofilm
Based on the design, assumptions that we used are : 1. Biofilm covered E. coli from the effect of nutrient solution, however, the bottom section of E. coli is in contact with PET. 2. Surface of PET is smooth and assume uniform at each point.
Corellation of q and qm,
So equation (1) can be rewritten as :
Based on assumptions that used in [TJUSLS iGEM 2016 Team, 2016], we get :
Reaction mechanisms of PET degradation are stated below [TJUSLS iGEM 2016 Team, 2016].
(E stands for PETase)
We can derive differential equations that we need from reaction mechanisms. Here is coupled ODEs that we used to determine rate of PETase formation and degradation of PET with biofilm forming based on assumptions that stated above.
Whereas C, T, and S consecutively denotes the amount of PET, PET∙E, and PETE produced, E as PETase, and P is ethylene terephtalate (the product from PET degradation by PETase), each against time.
Hence, we can substitute T from equation (3) into equation (5). Thus, we have
Now, let’s analyze the parameters of the preceding equation. It’s obvious that K, k3, Ka are constant in the system, while, in a fixed experiment, the area of the PET sheet and the concentration of the PET enzyme are unchangeable according to hypothesizes above, so the right part of the equation above is a constant, B.
Reaction is occured until value of degradation rate of PET and PETase equals to zero, so equation (9) becomes :
Insert equation (10) to equation (5), thus we have
The above differential equation is the final rate equation of the whole reaction process, and from the equation (12) we obtained that the reaction rate is constant, determined from the parameter D. And the reaction rate constants differs at varying PET concentrations and PET films.
However, in real process, the reaction rate will be decreased as the PET decreased during the reaction. So, the damping factor It included in the equation to contemplate the effect of substrate reduction.
To simplify the equations, define the constant K0 below
Thus, we have
and the differential equations become
Using Maple18, we make a plot graph of ethylene terephtalate production to observe the reaction rate. We have the parameters value of the equation as follows:
Parameter | Definition | Units | Values | References |
---|---|---|---|---|
K0 | A constant of the equation, K0 = Kk5k3/k4 | mg/(mL.h.mm2) | 1.43 | TJUSLS (2016) |
A | The area of the PET film | mm2 | 28.27 | TJUSLS (2016) |
Ka | Adsorption constant of the PET enzyme | mL/mg | 7.89 x 10-2 | TJUSLS (2016) |
I | The damping factor for the adsorption process of all reaction products | mg/(mL.h) | 2.15 x 10-4 | TJUSLS (2016) |
E0 | The initial PET enzyme concentration | mg/mL | 0.0305 | This study |
From the parameter values provided, a graph of ethylene terephtalate production has been plotted in Maple18 for the initial amount of ethylene terephtalate being zero as shown below:
Notice that the ethylene terephtalate production stops after approximately 18-20 hours before starting to decrease. This means we can collect data for PET degradation after 18-20 hours. Data that we have can be expanded to design PET degradation bioreactor that we have design here
Rate of PET Degradation without Biofilm
Comparing to degradation rate of PET with biofilm, PETase that can break down PET must be diffused into nutrient broth so surface contacting is occured, based on our design. Molecular weight of PETase is 30,247 g/mol, that relatively larger than oxygen (16 g/mol) or albumin (5,200 g/mol). Larger molecular weight makes value of diffusivity coefficient smaller. After diffusion, enzyme must create contact to PET surface so PET degradation will occur. Modeling of PETase diffusion and E. coli motility should modeled as stochastic model like Brownian motion, and we lack of data that we need. Biofilm that we used as media of E. coli to attach at PET surface based on our design should be evaluated as channel to PETase can flow because molecular weight relatively large. Large molecular weight also makes diffusion of PETase will occur in slow rate. So, there is possibility that biofilm can slower PET degradation. But, constraint that we have explained above enable us to make some hypothesis. Our hypothesis are :
Results from our wetlab team has proven our hypothesis (2) is true and this explain how mathematical model can be used as tool to assist wetlab team make decision and predict final result of the experiment.
Conclusions
To sum up, we made several conclusions regarding the modeling:
- We choose to use BL21 strain of Eschericia coli as the host.
- The maximum theoretical steady rate of PETase production is 0.0305 mg/(liter.h). The steady state attained in 10 h.
- PETase degradation occurs in 18-20 h.
References
Klipp, Edda, Wolfram Liebermeister, Christoph Wierling, Axel Kowald,Hans Lehrach, and Ralf Herwig.
(2009): Systems Biology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
MetaCyc Reaction: 3.1.1.101. Retrieved November 01, 2017, from https://biocyc.org/META/NEW-IMAGE?type=REACTION&object=RXN-17825
Rachmananda, Faisal (2015): Models of PET Degradation and Conversion by E-Coli Bacteria,
Bachelor’s Program Final Project, Institut Teknologi Bandung.
Shuler, Michael L., Fikret Kargi (2002): Bioprocess Engineering Basic Concepts. 2nd ed. New Jersey:
Prentice Hall PTR.
Shen, Y., Zhao, J., De La Fuente-núñez, C., Wang, Z., Hancock, R. E., Roberts, C. R., ... & Wang, Q. (2016). Experimental and
theoretical investigation of multispecies oral biofilm resistance to chlorhexidine treatment. Scientific reports, 6, 27537.
Silmi, Melia (2015): Models of LC-Cutinase Enzyme Regulation with Feedback System in PET
Biodegradation Process, Bachelor’s Program Final Project, Institut Teknologi Bandung.
Talib, T. (2016): Modelling Biodegradation of PET Involving The Growth of Factor E-Coli Bacteria
Measure, Master’s Program Thesis, Institut Teknologi Bandung.
TJUSLS iGEM 2016 team. Retrieved November 01, 2017, from https://2016.igem.org/Team:TJUSLS_China/Modeling