Difference between revisions of "Team:BostonU HW/HP/Silver"

Line 90: Line 90:
 
<div class="container text_box">
 
<div class="container text_box">
 
<h2>1. Community Engagement</h2>
 
<h2>1. Community Engagement</h2>
<div class="row">
+
<div class="row" >
 
<h3><u>STEM Pathways</u></h3>
 
<h3><u>STEM Pathways</u></h3>
 
<div class="text_section">
 
<div class="text_section">
 
<div class="text">
 
<div class="text">
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia urna ut lectus dictum ultricies. Phasellus euismod tellus quis felis condimentum ullamcorper. Aenean blandit rutrum viverra. Nam at nisl feugiat, gravida magna non, porttitor libero. Suspendisse at purus mattis, ullamcorper odio at, fringilla mi. Sed ultrices viverra est, eu fermentum justo feugiat vitae. Nunc sed egestas enim. Sed sed eros ac mauris suscipit aliquam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Pellentesque tincidunt nisi justo, a volutpat risus eleifend non.
+
Our activity aims to give the students a basic explanation of microfluidics and then push them to test this understanding through designing their own synbio chip using cardboard primitives.
 +
<br>
 +
<br>
 +
The event opened with a video explaining the basics of synthetic biology and how it impacts the world we live in. Following this, the girls broke off into smaller groups and rotated between the different activities planned for the day.
 +
<br>
 +
<br>
 +
Our activity began with a discussion of what microfluidics are and how our work can aid research in synthetic biology. Although we were limited to ten minutes, the student’s curiosity pushed us to explain microfluidics in way that was simple but did not lose the potential and universal applicability of the hardware.
 +
<br>
 +
<br>
 +
Next, we handed out two synbio protocols, cardboard primitives and a primitive key. The students immediately began working on translating protocols to microfluidic chips and created a variety of creative designs. While the students worked, we engaged with each group individually answering questions, discussing designs and challenging them to include features such as shared inputs or valves geometries.
 +
<br>
 +
<br>
 +
During this time we were also able to ask the students what opinions or thoughts they had regarding microfluidics and their applications in the wider world. Many students were intrigued by the possibility of automating basic experiments they performed in class as well as applications in medical diagnostics, chemistry and pharmaceuticals. Some students were curious about our manufacturing process and how we were able to prototype and fabricate chips at a fast rate. After hearing our breakdown of the process and the relative prices of our equipment, some girls were excited about the possibility of setting up a chip manufacturing space in their high school. The student’s excitement about our hardware and its various potential applications illustrated to us how our project can go on to impact synthetic biologists in the future.
 
</div>
 
</div>
 
</div>
 
</div>
Line 112: Line 124:
 
</div>
 
</div>
 
</div>
 
</div>
<div class="row">
+
 
<h3><u>STEM Pathways</u></h3>
+
<div class="text_section">
+
<div class="text">
+
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia urna ut lectus dictum ultricies. Phasellus euismod tellus quis felis condimentum ullamcorper. Aenean blandit rutrum viverra. Nam at nisl feugiat, gravida magna non, porttitor libero. Suspendisse at purus mattis, ullamcorper odio at, fringilla mi. Sed ultrices viverra est, eu fermentum justo feugiat vitae. Nunc sed egestas enim. Sed sed eros ac mauris suscipit aliquam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Pellentesque tincidunt nisi justo, a volutpat risus eleifend non.
+
</div>
+
</div>
+
</div>
+
 
<div class="row">
 
<div class="row">
 
<h3><u>Black Hole Lab</u></h3>
 
<h3><u>Black Hole Lab</u></h3>

Revision as of 15:31, 29 October 2017

BostonU_HW

Silver Human Practices

Understanding Microfluidics

The key goal of MARS is to make microfluidics as accessible and and understandable as possible to the synbio community. From our poll results it was obvious that most people had not heard of microfluidics before or only had a limited understanding of their application in a lab. This highlighted the need for more education on our hardware and created the perfect basis for our human practices and public outreach.

We worked together with STEM Pathways at Boston University in order to engage and inspire High school girls to pursue careers or higher education in STEM fields. This event was particularly well suited to our project as our activity would be happening in conjunction with many others relating to synthetic biology. This helped prep the students as they received a good understanding of synbio prior to arriving at our microfluidics station.

1. Community Engagement

STEM Pathways

Our activity aims to give the students a basic explanation of microfluidics and then push them to test this understanding through designing their own synbio chip using cardboard primitives.

The event opened with a video explaining the basics of synthetic biology and how it impacts the world we live in. Following this, the girls broke off into smaller groups and rotated between the different activities planned for the day.

Our activity began with a discussion of what microfluidics are and how our work can aid research in synthetic biology. Although we were limited to ten minutes, the student’s curiosity pushed us to explain microfluidics in way that was simple but did not lose the potential and universal applicability of the hardware.

Next, we handed out two synbio protocols, cardboard primitives and a primitive key. The students immediately began working on translating protocols to microfluidic chips and created a variety of creative designs. While the students worked, we engaged with each group individually answering questions, discussing designs and challenging them to include features such as shared inputs or valves geometries.

During this time we were also able to ask the students what opinions or thoughts they had regarding microfluidics and their applications in the wider world. Many students were intrigued by the possibility of automating basic experiments they performed in class as well as applications in medical diagnostics, chemistry and pharmaceuticals. Some students were curious about our manufacturing process and how we were able to prototype and fabricate chips at a fast rate. After hearing our breakdown of the process and the relative prices of our equipment, some girls were excited about the possibility of setting up a chip manufacturing space in their high school. The student’s excitement about our hardware and its various potential applications illustrated to us how our project can go on to impact synthetic biologists in the future.

2. Industrial Connection

Fraunhofer Lab

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia urna ut lectus dictum ultricies. Phasellus euismod tellus quis felis condimentum ullamcorper. Aenean blandit rutrum viverra. Nam at nisl feugiat, gravida magna non, porttitor libero. Suspendisse at purus mattis, ullamcorper odio at, fringilla mi. Sed ultrices viverra est, eu fermentum justo feugiat vitae. Nunc sed egestas enim. Sed sed eros ac mauris suscipit aliquam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Pellentesque tincidunt nisi justo, a volutpat risus eleifend non.

Black Hole Lab

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia urna ut lectus dictum ultricies. Phasellus euismod tellus quis felis condimentum ullamcorper. Aenean blandit rutrum viverra. Nam at nisl feugiat, gravida magna non, porttitor libero. Suspendisse at purus mattis, ullamcorper odio at, fringilla mi. Sed ultrices viverra est, eu fermentum justo feugiat vitae. Nunc sed egestas enim. Sed sed eros ac mauris suscipit aliquam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Pellentesque tincidunt nisi justo, a volutpat risus eleifend non.