Line 161: | Line 161: | ||
<p><center><img src="https://static.igem.org/mediawiki/2017/9/94/CodeCogsEqn_%284%29.gif" style="width: auto; height: auto;" align="middle"/></center></p> | <p><center><img src="https://static.igem.org/mediawiki/2017/9/94/CodeCogsEqn_%284%29.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
+ | |||
+ | and its critical point is reached when | ||
+ | <p><center><img src="https://static.igem.org/mediawiki/2017/a/a0/T--ITB_Indonesia--MC.gif" style="width: auto; height: auto;" align="middle"/></center></p> | ||
We choose α<sub>m</sub> = 0.011 μmin<sup>-1</sup>, γ<sub>m</sub>= 0.009 μ<sup>-1</sup>, γ<sub>C</sub>= 0.04 μmin<sup>-1</sup>. | We choose α<sub>m</sub> = 0.011 μmin<sup>-1</sup>, γ<sub>m</sub>= 0.009 μ<sup>-1</sup>, γ<sub>C</sub>= 0.04 μmin<sup>-1</sup>. |
Revision as of 02:57, 1 November 2017
Modelling
Quorum Sensing / PETase Transcription / Rate of PET Degradation with Biofilm / Rate of PET Degradation without Biofilm
Modelling Towards Precise Prediction
1) quorum sensing time to predict when biofilm formed 2) the rate of PETase production 3) PET hydrolysis by PETase with and without biofilm.
Quorum Sensing
Assumption that we used in quorum sensing module is AI-2 production constant equals to AI-2 signaling constant.
Here ODEs that we used :
Growth curve :
AI-2 Production :
Biofilm Formation :
Parameter | Definition | Value | Dimension | References |
---|---|---|---|---|
μ | Specific growth rate | 0.42 | h-1 | This study |
Xmax | Maximum carrying capacity | 0.76 | OD600 | This study |
cA | Signaling constant | 2.5 x 10-3 | h-1 | This study |
μ | Specific growth rate | 0.42 | h-1 | This study |
kQ | Monod constant | 0.42 | h-1 | This study |
AI2max | Specific growth rate | 0.42 | h-1 | This study |
cS | Specific growth rate | 0.42 | h-1 | This study |
kB | Biofilm growth constant | 0.42 | h-1 | This study |
Bmax | Biofilm carrying capacity | 0.42 | h-1 | This study |
PETase Transcription
1. No inclusion body is produced during the transcription. Consecutively, there’s also no TetR produced during the transcription.
2. Initally, there are 0.05 μM of mRNA and zero amount of PETase.
There, the differential equations of each parameter obtained through the analysis of mass balance are :Rate of PET Degradation with Biofilm
Based on the design, assumptions that we used are : 1. Biofilm covered E. coli from the effect of nutrient solution, however, the bottom section of E. coli is in contact with PET. 2.
Corellation of q and qm,
So equation 1 can be rewritten as :
Based on assumptions that used in [], we get :
Reaction mechanisms of PET degradation are stated below.
We can derive differential equations that we need from reaction mechanisms. Here is coupled ODEs that we used to determine rate of PETase formation and degradation of PET with biofilm forming based on assumptions that stated above.
Whereas PET defined as PET, E as PETase, and P is ethylene terephtalate, the product from PET degradation by PETase.
Parameter | Definition | Value | Dimension | References |
---|---|---|---|---|
μ | Specific growth rate | 0.42 | h-1 | This study |
Xmax | Maximum carrying capacity | 0.76 | OD600 | This study |
cA | Signaling constant | 2.5 x 10-3 | h-1 | This study |
μ | Specific growth rate | 0.42 | h-1 | This study |
kQ | Monod constant | 0.42 | h-1 | This study |
AI2max | Specific growth rate | 0.42 | h-1 | This study |
cS | Specific growth rate | 0.42 | h-1 | This study |
kB | Biofilm growth constant | 0.42 | h-1 | This study |
Bmax | Biofilm carrying capacity | 0.42 | h-1 | This study |
Rate of PET Degradation without Biofilm
Comparing to degradation rate of PET with biofilm, PETase that can break down PET must be diffused into nutrient broth so surface contacting is occured, based on our design. So our hypothesis is degradation of PET without biofilm slower than with biofilm.
References
Klipp, Edda, Wolfram Liebermeister, Christoph Wierling, Axel Kowald,Hans Lehrach, and Ralf Herwig.
(2009): Systems Biology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
Rachmananda, Faisal (2015): Models of PET Degradation and Conversion by E-Coli Bacteria,
Bachelor’s Program Final Project, Institut Teknologi Bandung.
Shuler, Michael L., Fikret Kargi (2002): Bioprocess Engineering Basic Concepts. 2nd ed. New Jersey:
Prentice Hall PTR.
Silmi, Melia (2015): Models of LC-Cutinase Enzyme Regulation with Feedback System in PET
Biodegradation Process, Bachelor’s Program Final Project, Institut Teknologi Bandung.
Talib, T. (2016): Modelling Biodegradation of PET Involving The Growth of Factor E-Coli Bacteria
Measure, Master’s Program Thesis, Institut Teknologi Bandung.