Aman54kumar (Talk | contribs) |
Aman54kumar (Talk | contribs) |
||
Line 32: | Line 32: | ||
Transformation of competent cells, plating in agar plates with antibiotics, inoculation of bacteria in liquid medium, incubations and all the steps of purification of sfgfp from transformed bacteria and finally the termination of Genetically modified organisms (GMOs) waste by chlorine. (in accordance to HSE safety rules/regulations of the University of Oslo (UiO)). | Transformation of competent cells, plating in agar plates with antibiotics, inoculation of bacteria in liquid medium, incubations and all the steps of purification of sfgfp from transformed bacteria and finally the termination of Genetically modified organisms (GMOs) waste by chlorine. (in accordance to HSE safety rules/regulations of the University of Oslo (UiO)). | ||
<a href="https://www.sikresiden.no/en/preventive/labs_workshops_clinics">More Info</a>. | <a href="https://www.sikresiden.no/en/preventive/labs_workshops_clinics">More Info</a>. | ||
− | <img class=" | + | <img class="safety-picture" src="https://static.igem.org/mediawiki/2017/1/1f/T--UiOslo_Norway--dirkLab1.jpg"> |
<pre><b> Laboratory Safety Level </b><br> CEES Lab BSL1 </pre> | <pre><b> Laboratory Safety Level </b><br> CEES Lab BSL1 </pre> | ||
Line 39: | Line 39: | ||
Cloning, PCR, Electrophoresis (in accordance to HSE safety precautions of the University of Oslo: | Cloning, PCR, Electrophoresis (in accordance to HSE safety precautions of the University of Oslo: | ||
<a href="https://www.sikresiden.no/en/preventive/labs_workshops_clinics">More Info</a>. | <a href="https://www.sikresiden.no/en/preventive/labs_workshops_clinics">More Info</a>. | ||
− | <img class=" | + | <img class="safety-picture" src="https://static.igem.org/mediawiki/2017/6/68/T--UiOslo_Norway--ceesLab.jpg"> |
<pre><b> Laboratory Safety Level </b><br> Lopez-Aviles Laboratory BSL1 </pre> | <pre><b> Laboratory Safety Level </b><br> Lopez-Aviles Laboratory BSL1 </pre> | ||
Line 47: | Line 47: | ||
Transformation of Schizosaccharomyces pombe, electrophoresis and restriction digestion studies and Yeast cell culture. in accordance to HSE safety rules of the University of Oslo. | Transformation of Schizosaccharomyces pombe, electrophoresis and restriction digestion studies and Yeast cell culture. in accordance to HSE safety rules of the University of Oslo. | ||
<a href="https://www.sikresiden.no/en/preventive/labs_workshops_clinics">More Info</a>. | <a href="https://www.sikresiden.no/en/preventive/labs_workshops_clinics">More Info</a>. | ||
− | <img class=" | + | <img class="safety-picture" src="https://static.igem.org/mediawiki/2017/3/30/T--UiOslo_Norway--Lopez-AvilesLaboratory2.jpg"> |
− | <img class=" | + | <img class="safety-picture" src="https://static.igem.org/mediawiki/2017/8/84/T--UiOslo_Norway--Lopez-AvilesLaboratory1.jpg"> |
Line 64: | Line 64: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>Schizosaccharomyces pombe (972h-)<br><img class=" | + | <td>Schizosaccharomyces pombe (972h-)<br><img class="safety-picture" class="safety-picture" src="https://static.igem.org/mediawiki/2017/7/7e/T--UiOslo_Norway--Fission_yeast.jpg"><br> |
Microscopic view of a fission yeast culture. | Microscopic view of a fission yeast culture. | ||
<p>Source: The Cell Cycle. Principles of Control. Author David O Morgan</p> | <p>Source: The Cell Cycle. Principles of Control. Author David O Morgan</p> | ||
Line 97: | Line 97: | ||
<div class="tab-pane fade" id="tab-item3"> | <div class="tab-pane fade" id="tab-item3"> | ||
− | <img class=" | + | <img class="safety-picture" src="https://static.igem.org/mediawiki/2017/9/92/T--UiOslo_Norway--GMOs.jpg"> |
<p>Source: http://www.emro.who.int/health-topics/antimicrobial-resistance/index.html </p> | <p>Source: http://www.emro.who.int/health-topics/antimicrobial-resistance/index.html </p> | ||
Revision as of 01:32, 2 November 2017
Safety
A biosafety level (BSL) is a collection of biocontainment measures required to isolate dangerous biological materials in an enclosed laboratory facility. The grades of containment range from the lowest biosafety level 0 (BSL-0) to the highest at level 4 (BSL-4).
Source: Richmond JY, McKinney RW (editors) (1999). Biosafety in Microbiological and Biomedical Laboratories
Laboratory Safety LevelWhat has it been done in this lab: Transformation of competent cells, plating in agar plates with antibiotics, inoculation of bacteria in liquid medium, incubations and all the steps of purification of sfgfp from transformed bacteria and finally the termination of Genetically modified organisms (GMOs) waste by chlorine. (in accordance to HSE safety rules/regulations of the University of Oslo (UiO)). More Info.
Dirk's Lab BSL2 (moderate risk)
Laboratory Safety LevelWhat has it been done in this lab: Cloning, PCR, Electrophoresis (in accordance to HSE safety precautions of the University of Oslo: More Info.
CEES Lab BSL1
Laboratory Safety LevelWhat has it been done in this lab: Transformation of Schizosaccharomyces pombe, electrophoresis and restriction digestion studies and Yeast cell culture. in accordance to HSE safety rules of the University of Oslo. More Info.
Lopez-Aviles Laboratory BSL1
Organism name (used in this project) | Risk Group |
---|---|
Schizosaccharomyces pombe (972h-) Microscopic view of a fission yeast culture. Source: The Cell Cycle. Principles of Control. Author David O Morgan |
G1 |
Saccharomyces cerevisiae Saccharomyces cerevisiae, SEM image Source: Sample Preparations for Scanning Electron Microscopy – |
G1 |
E-coli strains (e.g. DH5alpha, TOP10, BL21 Gold) SEM micrograph artificially colored. Source: Phil Moyer. Photo courtesy CDC/Janice Haney Carr. |
G1 |
Source: http://www.emro.who.int/health-topics/antimicrobial-resistance/index.html
A genetically modified organism (GMO) is an organism whose genetic material has been modified using genetic engineering methods (i.e., a genetically modified organism). GMOs are used nowadays to produce variety of medications and also a more challenging area; genetically modified foods (GMF). It is also used in scientific research and production of other goods.
Source: History of Genetically Modified Foods". umich.edu. 21 October 2015
Antimicrobial resistance (AMR) is the ability of a microorganism (like bacteria, viruses, and also parasites) to neutralize an antimicrobial (e.g. antibiotics and antivirals) from working properly against it. As a outcome, standard treatments get ineffective, infections persist and could potentially spread to others.Source: http://www.who.int/antimicrobial-resistance/en/
World Health Organization has provided a List of critical important Antibiotics to address this issue.See WHO list of Critically Important Antimicrobials (CIA*)
source: http://www.who.int/foodsafety/areas_work/antimicrobial-resistance/cia/en/
Department of Bioscience, UiO has provided a set of rules/regulations to ensure working safely in lab. In particular, Local HSE criteria of Department of Bioscience also ensures to protect environment from spreading of AMR and GMOs from Lab facilities to surrounding nature. For this end, these procedures must be fulfilled before, during and at the end of Lab work:- Procedure for work with Biological substances
- Procedure for working with genetically modified organisms (GMO)
- Procedure for waste management, including laboratory waste
- Local procedure for health and safety training and access to laboratories
- Local procedure for health and safety training and access to laboratories
Library of common procedures:
In the case of lack of a defined procedure, the library of common procedure, University of Oslo, gives the way to submit a new SOP; this happens after a comprehensive risk assessment analysis by safety specialists and confirmation by Safety Dean of Deaprtment. See More info
Resistance factors used in this project:
Name | Safety precautions |
---|---|
Ampicillin | not included in the critical important CIA list |
Chloramphenicol | not included in the critical important CIA list |
Kanamycin | not included in the critical important CIA list |
- Training for all the team by supervisors before lab work
- Working in Biosafety BSL2 Lab (in the time of working with Bacteria)
- Safe Discarding of Gloves, small samples etc. in accordance to Local HSE procedures
- Chemically termination of the GMO containing materials before discarding in accordance to Local HSE procedures
Source: University of Oslo official website
Lab hazards can bear risk to your health and GMOs can potentially affect environmental health/balance. It is essential that lab workers to be aware regarding safety precautions and safe removal before/during/after lab work. All students at the UiO should receive HSE training specialized to the faculty they belong to. These are mandatory courses starting up during the first weeks of every semester. This kind of training ensures that all students, as well as other members of the working environment, have the necessary training to perform for their duties and fulfill their responsibilities put forward by their work. More info Moreover, a customized training also was set up for the whole team before initiation of project at BSL2 and BSL1 labs respectively, conducted by Lab Managers: Professor Dirk Linke, Professor Sandra Lopez Avilez and Ninna... Anders Moien assisted us as the safety advisor from the department of Bioscience in this project. This customized training by supervisors covered these headlines:
- appropriate use of personal protective equipment (PPE)
- proper waste disposal
- and risk assessment Also, two mandatory act was determined by supervisors in the time of working at BSL2:
- Laboratory work: Minimum two people, Maximum four
- Laboratory work: Working under supervision of at least one instructor all the times