Line 274: | Line 274: | ||
<h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Composite_Part">Best Composite Part</a> </h4> | <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Composite_Part">Best Composite Part</a> </h4> | ||
<article> | <article> | ||
− | This part (BBa_K2201373) contains a T3 RNA Polymerase with an inverted mRFP under T3 RNA polymerase control for the enhancing of reporter signals. It is an improved reporter and a genetic circuit that could report even weak expression levels. It was designed based on the model of an amplifier in electrical engineering to intensify an existing input signal and could be used in a broad range of synthetic biology applications. | + | This part (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2201373">BBa_K2201373</a>) contains a T3 RNA Polymerase with an inverted mRFP under T3 RNA polymerase control for the enhancing of reporter signals. It is an improved reporter and a genetic circuit that could report even weak expression levels. It was designed based on the model of an amplifier in electrical engineering to intensify an existing input signal and could be used in a broad range of synthetic biology applications. |
</article> | </article> | ||
<h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Part_Collection">Best Part Collection</a> </h4> | <h4> <a target="_blank" href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Part_Collection">Best Part Collection</a> </h4> |
Revision as of 00:18, 2 November 2017
Achievements
Establishment of two orthogonal methods for the detection of unnatural base pairs in a target sequence via Oxford Nanopore sequencing and an enzyme based detection method
Development of a software suite for these orthogonal methods
Integration and characterization of the nucleotide transporter PtNTT2 from P.tricornutum in E.coli for the uptake of unnatural nucleoside triphosphates
Proof that certain Taq-polymerases can efficiently incorporate unnatural nucleotides
Construction of a toolbox consisting of five aminoacyl-tRNA synthetases for incorporation of non-canonical amino acids
Colocalization of the RuBisCo using a fluorescent amino acid
Development of a photoswitchable lycopene pathway
Design, chemical synthesis and proof of functionality of a novel, fully synthetic amino acid based on cyanonitrobenzothiazol and asparagine
Modeling more than ten new aaRS sequences
Library development with several hundred thousand sequences for selecting aminoacyl-tRNA synthetases
Construction of positive and negative selection plasmids for the directed evolution of new synthetases for non-canonical amino acids
Improvement of an aminoacyl-tRNA synthetase test-system by introducing a FRET-system and development of a ranking system
Construction of an LED panel for irradiating 96-well microtiter plates, which can be used to manipulate non-canonical amino acids and much more
Development of an Android App to control the LED panel with your smartphone via Bluetooth
Writing a biosafety report titled “Auxotrophy to Xeno-DNA: A Comprehensive Exploration of Combinatorial Mechanisms for a High-Fidelity Biosafety System”
Writing the ChImp Report on “Chances and Implications of an Expanded Genetic Code”
We Applied for the Following Special Prizes
Best Integrated Human Practices
Best Education and Public Engagement
Best Measurement
Best Modeling
Best Applied Design
Best Basic Part
Best Composite Part
Best Part Collection
Best Software Tool
Best Hardware
Integrated Human Practices
Improve a previous part
We improved the validation system for aminoacyl-tRNA synthetases for ncAAs from Austin Texas 2014 (BBa_K1416004) and Aachen 2016 (BBa_K2020040) with a FRET system (BBa_K2201343) and used it in our project. You can find our part improvement site here.
Model your project
Demonstrate your work
Validated Part
Collaboration
Human Practices
Register and attend
Deliverables
Attribution
Characterization
We characterized various parts and successfully participated at the Interlab Measurement Study .