Difference between revisions of "Team:TU Darmstadt"

Line 1: Line 1:
 +
{{TU_Darmstadt/chiTU}}
 
<html>
 
<html>
 +
<body>
 +
<!-- Header -->
 +
<section id="header">
 +
<header>
 +
<span class="image avatar"><img src="https://static.igem.org/mediawiki/2017/3/3d/LogoOWL.png" alt="" /></span>
 +
<h1 id="logo"><a href="https://2017.igem.org/Team:TU_Darmstadt">ChiTUcare</a></h1>
 +
<!--<p>iGEM TU Darmstadt<br />
 +
2017</p>-->
 +
</header>
 +
<nav id="nav">
 +
<ul>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/project" class="active">Project</a></li>
 +
                                        <div class="nav-proj-drop">
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/project/chitin_synthase">Chitin Synthase</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/project/chitinase">Chitinase</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/project/chitin_deacetylase">Chitin Deacetylase</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/project/regulation_system">Regulation System</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/project/chemistry">Chemistry</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/project/modeling">Modeling</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/project/parts">Parts</a></li>
 +
                                        </div>
 +
                                        <div class="nav-follow">   
 +
                                        <div class="nav-drop">
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/human_practices">Human Practices</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/tech">Tech</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/team">Team</a></li>
 +
<li><a href="https://2017.igem.org/Team:TU_Darmstadt/judging">Judging</a></li>
 +
                                        </div>
 +
<input type="button" div class="submenu" onclick="toggleImage();toggleImage2();this.value=this.value=='Show menu'?'Show submenu':'Show menu'" value="Show menu">
 +
</div>
 +
</ul>
 +
</nav>
 +
<footer>
 +
<ul class="icons">
 +
<li><a href="#" class="icon fa-twitter"><span class="label">Twitter</span></a></li>
 +
<li><a href="#" class="icon fa-facebook"><span class="label"><img src="" alt="" /></span></a></li>
 +
<li><a href="#" class="icon fa-instagram"><span class="label">Instagram</span></a></li>
 +
<li><a href="#" class="icon fa-envelope"><span class="label">Email</span></a></li>
 +
</ul>
 +
</footer>
 +
</section>
 +
<!-- Wrapper -->
 +
<div id="wrapper">
  
    <head>
+
<!-- Main -->
        <style>
+
<div id="main"><!--DO NOT DELETE THE LINES ABOVE!!!-->
            html {
+
    background: #d4043d;
+
   
+
}
+
  
body {
+
<!-- One -->
      
+
     <section id="one">
    font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
+
        <div class="container">
    font-size: 16px;
+
<header class="major">
    line-height: 1.5;
+
<h2>The Project: ChiTUcare</h2><!--BIG HEADING-->
    margin: 0 auto;
+
</header>
    max-width: 80%;
+
<div class="post-it">
    padding: 2em 2em 4em;
+
<p>ABSTRACT: Here, we will present our project in a way everybody can understand it. After this REALLY simplified abstract, we should go a tiny little bit more into detail. Please have in mind that this part should still be about explaining the WHOLE project. One thing we could do but don't have to is to create boxes explaining the enzymes or subprojects when hovering over a highlighted text line such as 'chitinase'.</p></div>
    padding-top: 10px;
+
</div>
    vertical-align: middle;
+
</section>
    background-color: #d4043d;
+
<section id="two"><div class="container">
}
+
<center><img src="https://static.igem.org/mediawiki/2017/0/04/TUDA-tuda071517_full.png" width="80%"></center>
 +
<h4>Chitosan is a biopolymer with both antibacterial and wound-healing properties. By linking fluorophores to chitosan oligomeres smart plasters can be produced, able to detect pathogenic bacteria via proteolytic activity. Therefore, production of designed chitosan for medical purpose is of special interest.</h4>
 +
<img src="https://static.igem.org/mediawiki/2017/3/36/TUDarmstadtPDplaster.png" alt="chitosan hydrogel" width="100%">
 +
<h3>Engineering <i>E.&nbsp;coli</i> for specific synthesis of designer chitosan</h3>
 +
<p>Our primary wet-lab goal is to engineer a synthetic biological circuit for the specific synthesis of chitosans in <i>E.&nbsp;coli</i>. The chemical properties as well as the bioactivity of chitosans mainly depend on three variables:  the length of the oligomers, their level of deacetylation and their patterns of deacetylation.</p>
 +
        <p>Our enzymatic approach includes three enzymes. A chitin synthase (<i>Rhizobium&nbsp;leguminosarum bv.&nbsp;viciae</i>) catalyzes the oligomerization of N-acetylglucosamine-UDP monomers to chitin oligomers (tetramers and pentamers). Furthermore, two chitin deacetylases that differ in their regioselectivity (<i>Sinorhizobium&nbsp;meliloti</i>  (nodB) and <i>Puccina&nbsp;graminis f.&nbsp;sp.&nbsp;tritici</i>) are regulated orthogonally, making it possible to choose between two different types of deacetylation patterns.</p>
 +
            <img src="https://static.igem.org/mediawiki/2017/2/2d/TUDarmstadtPDchitosansynthesis.png" alt="pathway chitosan" width="100%">
 +
<h3>Application of chitosan oligomers: chitosan hydrogel for bacterial enzyme detection</h3>
 +
        <p>Downstream of the synthetic biological circuit for the synthesis of chitosan pentamers, we want to give an example for an explicit application of chitosan oligomers. This shall be accomplished by building a plaster for wounds carrying the chitosan hydrogel with chitosan oligomers linked to a fluorophore via a peptide chain. When the plaster is applied to a wound it can detect bacterial protease activities and thus diagnose wound infection. Proteases will cleave the peptide linker and release the fluorophore, that is then detectable via UV-light.</p>
 +
            <center><img src="https://static.igem.org/mediawiki/2017/4/40/TUDarmstadtPDpeptidelinker.png" alt="peptide linker" width="50%"></center>
 +
</div>
 +
    </section>
  
h1, h2, h3, h4, h5, h6 {
+
<!-- Footer -->
    color: #35383E;
+
  <section id="footer">
    font-weight: 600;
+
<div class="container">
    line-height: 1.3;
+
<ul class="copyright">
}
+
<li>Design: <a href="http://html5up.net">HTML5 UP</a></li>
 +
</ul>
 +
</div>
 +
  </section>
  
h2 {
+
</div>
    margin-top: 1.3em;
+
</body>
   
+
</html>
}
+
p {
+
    color: #35383E;
+
}
+
a {
+
    color: #0083e8;
+
}
+
 
+
b, strong {
+
    font-weight: 600;
+
}
+
 
+
samp {
+
    display: none;
+
}
+
 
+
.one {
+
    margin-top: 10px;
+
    background: #fff;
+
    box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.3);
+
    color: #545454;
+
    width: 100%;
+
}
+
#two {
+
    margin: 50px;
+
    padding-top: 25px;
+
    padding-bottom:25px;
+
}
+
#red{
+
    color: #d4043d;
+
}
+
#content{
+
    margin-top: 20px;
+
    margin-right: 42px;
+
    margin-left: 42px;
+
    padding: 0;
+
    border: 0;
+
    width: 100%;
+
}
+
#content.mw-body{
+
    margin: 0;
+
}
+
#top_menu_under{
+
    height: 70px;
+
}
+
#top_title{
+
    height: 0px;
+
    margin: 0;
+
    display: none;
+
}
+
#HQ_page{
+
    background: #fff;
+
    box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.3);
+
}
+
#sideMenu{
+
    display: none;
+
}
+
#gemLO{
+
    clear: both;
+
    text-align: right;
+
    padding: 0px 10px;
+
}
+
 
+
        </style>
+
        <title> iGEM TU Darmstadt </title>
+
    </head>
+
   
+
    <body>
+
    <center>
+
    <div class="one">
+
        <div id="gemLO"><img src="https://static.igem.org/mediawiki/2017/9/9c/IGEM_logo_2500x2500.png" width="10%"></div>
+
        <div id="two">
+
        <center><img src="https://static.igem.org/mediawiki/2017/0/04/TUDA-tuda071517_full.png" width="80%"></center>
+
        <h4>Chitosan is a biopolymer with both antibacterial and wound-healing properties. By linking fluorophores to chitosan oligomeres smart plasters can be produced, able to detect pathogenic bacteria via proteolytic activity. Therefore, production of designed chitosan for medical purpose is of special interest.
+
        </h4><br>
+
            <img src="https://static.igem.org/mediawiki/2017/3/36/TUDarmstadtPDplaster.png" alt="chitosan hydrogel" width="100%">
+
        <h3 id="red">Engineering <i>E.&nbsp;coli</i> for specific synthesis of designer chitosan
+
        </h3>
+
       
+
 
+
        <p>
+
            Our primary wet-lab goal is to engineer a synthetic biological circuit for the specific synthesis of chitosans in <i>E.&nbsp;coli</i>. The chemical properties as well as the bioactivity of chitosans mainly depend on three variables:  the length of the oligomers, their level of deacetylation and their patterns of deacetylation. 
+
 
+
 
+
        </p>
+
        <p>
+
            Our enzymatic approach includes three enzymes. A chitin synthase (<i>Rhizobium&nbsp;leguminosarum bv.&nbsp;viciae</i>) catalyzes the oligomerization of N-acetylglucosamine-UDP monomers to chitin oligomers (tetramers and pentamers). 
+
            Furthermore, two chitin deacetylases that differ in their regioselectivity (<i>Sinorhizobium&nbsp;meliloti</i>  (nodB) and <i>Puccina&nbsp;graminis f.&nbsp;sp.&nbsp;tritici</i>) are regulated orthogonally, making it possible to choose between two different types of deacetylation patterns.
+
 
+
        </p>
+
            <img src="https://static.igem.org/mediawiki/2017/2/2d/TUDarmstadtPDchitosansynthesis.png" alt="pathway chitosan" width="100%">
+
        <h3 id="red">Application of chitosan oligomers:
+
            chitosan hydrogel for bacterial enzyme detection
+
        </h3>
+
        <p>
+
            Downstream of the synthetic biological circuit for the synthesis of chitosan pentamers, we want to give an example for an explicit application of chitosan oligomers. This shall be accomplished by building a plaster for wounds carrying the chitosan hydrogel with chitosan oligomers linked to a fluorophore via a peptide chain. When the plaster is applied to a wound it can detect bacterial protease activities and thus diagnose wound infection. Proteases will cleave the peptide linker and release the fluorophore, that is then detectable via UV-light.
+
        </p>
+
            <center><img src="https://static.igem.org/mediawiki/2017/4/40/TUDarmstadtPDpeptidelinker.png" alt="peptide linker" width="50%"></center>
+
        </div>
+
     
+
    </div>
+
</center>
+

Revision as of 18:51, 13 October 2017

MainPage

The Project: ChiTUcare

ABSTRACT: Here, we will present our project in a way everybody can understand it. After this REALLY simplified abstract, we should go a tiny little bit more into detail. Please have in mind that this part should still be about explaining the WHOLE project. One thing we could do but don't have to is to create boxes explaining the enzymes or subprojects when hovering over a highlighted text line such as 'chitinase'.

Chitosan is a biopolymer with both antibacterial and wound-healing properties. By linking fluorophores to chitosan oligomeres smart plasters can be produced, able to detect pathogenic bacteria via proteolytic activity. Therefore, production of designed chitosan for medical purpose is of special interest.

chitosan hydrogel

Engineering E. coli for specific synthesis of designer chitosan

Our primary wet-lab goal is to engineer a synthetic biological circuit for the specific synthesis of chitosans in E. coli. The chemical properties as well as the bioactivity of chitosans mainly depend on three variables:  the length of the oligomers, their level of deacetylation and their patterns of deacetylation.

Our enzymatic approach includes three enzymes. A chitin synthase (Rhizobium leguminosarum bv. viciae) catalyzes the oligomerization of N-acetylglucosamine-UDP monomers to chitin oligomers (tetramers and pentamers). Furthermore, two chitin deacetylases that differ in their regioselectivity (Sinorhizobium meliloti (nodB) and Puccina graminis f. sp. tritici) are regulated orthogonally, making it possible to choose between two different types of deacetylation patterns.

pathway chitosan

Application of chitosan oligomers: chitosan hydrogel for bacterial enzyme detection

Downstream of the synthetic biological circuit for the synthesis of chitosan pentamers, we want to give an example for an explicit application of chitosan oligomers. This shall be accomplished by building a plaster for wounds carrying the chitosan hydrogel with chitosan oligomers linked to a fluorophore via a peptide chain. When the plaster is applied to a wound it can detect bacterial protease activities and thus diagnose wound infection. Proteases will cleave the peptide linker and release the fluorophore, that is then detectable via UV-light.

peptide linker