(Prototype team page) |
Erboardman (Talk | contribs) |
||
Line 10: | Line 10: | ||
− | <h5> | + | <h5>Keycoli</h5> |
<ul> | <ul> | ||
− | <li> | + | <li> The first biological password that changes over time! |
+ | Microorganism is transformed using BioBricks to produce secondary metabolites, initially the metabolites will be a simpler product such as fluorescent proteins. The secondary metabolites will be produced in a unique and random configuration and as as our "key". In order to produce this randomness, shuffling of metabolite expression levels via transposons or error prone RNase will be applied. To produce a unique configuration of the metabolite varying promoter expression levels will produce unique metabolites. This key will be used to open locked mechanism such as safes and secure doors. | ||
+ | For the key to be practical it would need to be portable, this is where our key transport device comes in. It will consist of a similar design to a chemostat. Our Key colony metabolites will degrade a desired amount of time before they must be renewed from the Lock colony, when this occurs the configuration of the key is shuffled once again to ensure the key and lock are changing. | ||
+ | Once the key has been transported to the locked object a juxtaposition of a detection technique such as gas chromotography or mass spectrometry and data comparison software will compare the secondary metabolites of the "key" microorganism to the "reference/lock" colony. If the metabolies of both colonies exceeds a threshold of similarity the locked object will become unlocked.</li> | ||
<li>A detailed explanation of why your team chose to work on this particular project.</li> | <li>A detailed explanation of why your team chose to work on this particular project.</li> | ||
<li>References and sources to document your research.</li> | <li>References and sources to document your research.</li> |
Revision as of 17:29, 28 June 2017
UNOTT
Description
Tell us about your project, describe what moves you and why this is something important for your team.
Keycoli
- The first biological password that changes over time! Microorganism is transformed using BioBricks to produce secondary metabolites, initially the metabolites will be a simpler product such as fluorescent proteins. The secondary metabolites will be produced in a unique and random configuration and as as our "key". In order to produce this randomness, shuffling of metabolite expression levels via transposons or error prone RNase will be applied. To produce a unique configuration of the metabolite varying promoter expression levels will produce unique metabolites. This key will be used to open locked mechanism such as safes and secure doors. For the key to be practical it would need to be portable, this is where our key transport device comes in. It will consist of a similar design to a chemostat. Our Key colony metabolites will degrade a desired amount of time before they must be renewed from the Lock colony, when this occurs the configuration of the key is shuffled once again to ensure the key and lock are changing. Once the key has been transported to the locked object a juxtaposition of a detection technique such as gas chromotography or mass spectrometry and data comparison software will compare the secondary metabolites of the "key" microorganism to the "reference/lock" colony. If the metabolies of both colonies exceeds a threshold of similarity the locked object will become unlocked.
- A detailed explanation of why your team chose to work on this particular project.
- References and sources to document your research.
- Use illustrations and other visual resources to explain your project.
Advice on writing your Project Description
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.
Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.
References
iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.
Inspiration
See how other teams have described and presented their projects: