Line 11: | Line 11: | ||
<img src='https://static.igem.org/mediawiki/2017/3/32/T--UCC_Ireland--collaboration.png' style='width: 60%; margin: auto; display: block;'></img> | <img src='https://static.igem.org/mediawiki/2017/3/32/T--UCC_Ireland--collaboration.png' style='width: 60%; margin: auto; display: block;'></img> | ||
− | < | + | <h1 style='text-align: center;'>École Polytechnique Fédérale de Lausanne</h2> |
<img src="https://static.igem.org/mediawiki/2017/0/01/T--EPFL--logo.svg" id="aptasense-logo" style='display: block; float: left; max-width: 20%; height: auto; padding: 0px 5px 5px 0px;'></img> | <img src="https://static.igem.org/mediawiki/2017/0/01/T--EPFL--logo.svg" id="aptasense-logo" style='display: block; float: left; max-width: 20%; height: auto; padding: 0px 5px 5px 0px;'></img> |
Revision as of 08:44, 1 November 2017
École Polytechnique Fédérale de Lausanne
We collaborated with École Polytechnique Fédérale de Lausanne in Switzerland to test our Erythromycin biosensor to test its viability in a cell-free system. In-vitro protein expression is the production of recombinant proteins in cell lysate using biomolecular translation machinery. Two basic components of are needed to accomplish cell-free synthesis: (1) the genetic template, the pJKR-H-mphR plasmid (our erythromycin biosensor) and (2) reaction solution containing transcriptional and translational machinery and enzymes. After establishing that the presence of a dose-response relationship exists in the inducible gene control system in pJKR-H-mphR plasmid through in-vivo testing in DH5-alpha cells in the lab, we sought to test out system in a cell-free environment. Given that, in general, extracts for cell-free systems are engineered from systems that are known to support high level protein synthesis, they might support a system in which the level of readout protein, either sfGFP or AmilCP, production is proportional to the concentration of inducer that the sensor is exposed to. In contrast, Dh5-Alpha cells may not be sufficiently protease deficient, resulting in progressive degradation of sfGFP or AmilCP over the course of an experiment, producing inconsistent results.