Difference between revisions of "Team:UCC Ireland/Biosensors"

Line 1: Line 1:
 
{{UCC_Ireland/Menu}}
 
{{UCC_Ireland/Menu}}
 
{{UCC_Ireland/Stylesheet}}
 
{{UCC_Ireland/Stylesheet}}
 
 
<html>
 
<html>
 +
<style type='text/css'>
 +
.bsnavbar {
 +
width:80%;
 +
margin-left:auto;
 +
margin-right:auto;
 +
}
 +
 +
.bsnb_d {
 +
width:33%;
 +
height:50px;
 +
overflow:hidden;
 +
min-width:200px;
 +
text-align:center;
 +
font-size:24px;
 +
line-height:50px;
 +
float:left;
 +
}
 +
.bsnb_d:hover {
 +
background-color:lightgrey;
 +
color:white;
 +
}
 +
.bsnba {
 +
display:block;
 +
height:50px;
 +
}
 +
.bsnba:link, .bsnba:visited, {
 +
color:black;
 +
text-decoration:none;
 +
}
 +
.bsnb_dd {
 +
height:100%;
 +
}
 +
 +
 +
</style>
 
<head>
 
<head>
 
<link href="https://2017.igem.org/Template:UCC_Ireland/CSS/biosensor_style?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
 
<link href="https://2017.igem.org/Template:UCC_Ireland/CSS/biosensor_style?action=raw&ctype=text/css" type="text/css" rel="stylesheet">
Line 10: Line 44:
 
<div class='model'>
 
<div class='model'>
 
<img src='https://static.igem.org/mediawiki/2017/0/0b/T--UCC_Ireland--biosensortitle.png' style='width: 60%; margin: auto; display: block;'></img>
 
<img src='https://static.igem.org/mediawiki/2017/0/0b/T--UCC_Ireland--biosensortitle.png' style='width: 60%; margin: auto; display: block;'></img>
<div class='img_text_div' style='width:100%;margin-left:auto; margin-right:auto;'>
+
<div class='bsnavbar'>
 +
<div class='bsnb_d'>
 +
<a  href='https://static.igem.org/mediawiki/2017/0/0b/T--UCC_Ireland--biosensortitle.png' class='bsnba'>
 +
erythromycin biosensor
 +
</a>
 +
</div>
 +
<div class='bsnb_d'>
 +
<a  href='https://static.igem.org/mediawiki/2017/0/0b/T--UCC_Ireland--biosensortitle.png' class='bsnba'>
 +
methanol biosensor
 +
</a>
 +
</div>
 +
<div class='bsnb_d'>
 +
<a  href='https://static.igem.org/mediawiki/2017/0/0b/T--UCC_Ireland--biosensortitle.png' class='bsnba' style='clear:right'>
 +
optimisation considerations
 +
</a>
 +
</div>
 +
</div>
 +
</br>
 +
<div class='img_text_div' style='width:100%;margin-left:auto; margin-right:auto;clear:both;'>
 
<div class='innerimg'>
 
<div class='innerimg'>
 
<img src='https://static.igem.org/mediawiki/2017/0/0c/T--UCC_Ireland--biosensorngb.png' style='width: 40%; margin-left:auto;float:left;'></img>
 
<img src='https://static.igem.org/mediawiki/2017/0/0c/T--UCC_Ireland--biosensorngb.png' style='width: 40%; margin-left:auto;float:left;'></img>

Revision as of 01:07, 2 November 2017

UCC iGEM 2017

Synthetic biology allows for the creation of biological sensors from preexisting natural genetic circuits. Since biosensors can link a multitude of sensor and transducer elements to a wide range of readouts, they have huge potential for use in many different industries worldwide. They can be used in both in vivo and in vitro to measure the concentration of the desired analyte. Biosensors can be used in diagnostic tests and can even be utilised in agriculture to measure the fruit ripening process (iGEM team Sydney 2016) and can detect environmental hazards (iGEM team Ionis). Biological sensors incorporate biological components in either one or both of the “sensor” and “transducer” elements. When the analyte binds downstream genes are transcribed including reporter read-out genes that allow for quantification of the analyte.

Having a simple standardized colorimetric readout that quantifies the concentration of drugs and contaminants, may be very useful to ensure consumer safety in the food and beverage industry. Currently, all processed food and beverages are subject to rigorous testing for contaminants that are hazardous to human health. However, this testing can be expensive, inaccessible and time-consuming. Since these sophisticated tests are often limited to large-scale producers, local dairy farmers, microbreweries and home-brewers remain vulnerable to penalties and poisoning should the level of contaminants in their products fall outside the regulatory guidelines. Our iGEM project aims to create an affordable, easy to use and reliable biosensor, that will be incorporated into a portable colourimetric device, to detect antibiotic residues in milk and methanol in alcohol. A cell-free system will be utilised to circumvent the risks associated with the use of genetically-modified live bacteria outside the laboratory.