Plastic pollution, especially in the ocean, has always been a very concerning environmental issue, both globally and regionally. PET (polyethylene glycol)-based plastics polluting our ocean are very difficult to degrade (takes 450-1000 for a single plastic bottle to be naturally degraded). Moreover, harsh ocean environment (waves and sunlight) cuts these plastics into very small fragments called microplastics, which size is only several milimeters in diameter. These microplastics make plastic pollution even more hazardous and harder to deal with. Microplastics are commonly unintentionally consumed by marine organisms causing poisoning which leads to deaths. And while normal sized plastics are easy for humans to collect and recycle, in microplastic form, these plastics are impossible to collect, making them an untreatable pollution.
Realizing those facts, and seeing that treating plastic pollution is currently one of Indonesia’s main concerns, iGEM ITB 2017 team decides to step in and try to address this seemingly impossible-to-treat issue from synthetic biological perspective.
The core of our project is to create a bacterial machine which will be able to 1.) detect the presence of microplastics, 2.) attach and colonize around the microplastics fragments, and 3.) degrades microplastics efficiently. Aside from that, our team plans to also ensure that our bacterial machine will also be able to 4.) utilize microplastics as its nutrition source, further enhancing its efficiency, 5.) grow and survive well in harsh marine environments, and 6.) prevent DNA leaks to nature.