Difference between revisions of "Team:KU Leuven/Description"

Line 58: Line 58:
 
        
 
        
 
         #grad {
 
         #grad {
    background: -webkit-linear-gradient(#faebd7,#faeddb,#fbefdf,#fbf1e3,#fcf3e7,#fcf5eb,#fdf7ef,#f2f2f2); /* Safari 5.1-6.0 */
+
            background: -webkit-linear-gradient(#faebd7,#faeddb,#fbefdf,#fbf1e3,#fcf3e7,#fcf5eb,#fdf7ef,#f2f2f2); /* Safari 5.1-6.0 */
    background: -o-linear-gradient((#faebd7,#faeddb,#fbefdf,#fbf1e3,#fcf3e7,#fcf5eb,#fdf7ef,#f2f2f2)); /* Opera 11.1-12.0 */  
+
            background: -o-linear-gradient((#faebd7,#faeddb,#fbefdf,#fbf1e3,#fcf3e7,#fcf5eb,#fdf7ef,#f2f2f2)); /* Opera 11.1-12.0 */  
    background: -moz-linear-gradient((#faebd7,#faeddb,#fbefdf,#fbf1e3,#fcf3e7,#fcf5eb,#fdf7ef,#f2f2f2)); /* Firefox 3.6-15 */
+
            background: -moz-linear-gradient((#faebd7,#faeddb,#fbefdf,#fbf1e3,#fcf3e7,#fcf5eb,#fdf7ef,#f2f2f2)); /* Firefox 3.6-15 */
    background: linear-gradient((#faebd7,#faeddb,#fbefdf,#fbf1e3,#fcf3e7,#fcf5eb,#fdf7ef,#f2f2f2)); /* Standard syntax */
+
            background: linear-gradient((#faebd7,#faeddb,#fbefdf,#fbf1e3,#fcf3e7,#fcf5eb,#fdf7ef,#f2f2f2)); /* Standard syntax */
}
+
  }
 
                  
 
                  
 
         #pi_list .header .shortcontent .am p {
 
         #pi_list .header .shortcontent .am p {
Line 78: Line 78:
 
             padding: 0 10px 0 10px;
 
             padding: 0 10px 0 10px;
 
         }
 
         }
 +
        .modalDialog {
 +
            position: fixed;
 +
            font-family: Arial, Helvetica, sans-serif;
 +
            top: 0;
 +
            right: 0;
 +
            bottom: 0;
 +
            left: 0;
 +
            background: rgba(0,0,0,0.8);
 +
            z-index: 99999;
 +
            opacity:0;
 +
            -webkit-transition: opacity 400ms ease-in;
 +
            -moz-transition: opacity 400ms ease-in;
 +
            transition: opacity 400ms ease-in;
 +
            pointer-events: none;
 +
        }
 +
        .modalDialog:target {
 +
            opacity:1;
 +
            pointer-events: auto;
 +
        }
 +
 +
        .modalDialog > div {
 +
            width: 400px;
 +
            position: relative;
 +
            margin: 10% auto;
 +
            padding: 5px 20px 13px 20px;
 +
            border-radius: 10px;
 +
            background: #fff;
 +
            background: -moz-linear-gradient(#fff, #999);
 +
            background: -webkit-linear-gradient(#fff, #999);
 +
            background: -o-linear-gradient(#fff, #999);
 +
        }
 +
        .close {
 +
            background: #606061;
 +
            color: #FFFFFF;
 +
            line-height: 25px;
 +
            position: absolute;
 +
            right: -12px;
 +
            text-align: center;
 +
            top: -10px;
 +
            width: 24px;
 +
            text-decoration: none;
 +
            font-weight: bold;
 +
            -webkit-border-radius: 12px;
 +
            -moz-border-radius: 12px;
 +
            border-radius: 12px;
 +
            -moz-box-shadow: 1px 1px 3px #000;
 +
            -webkit-box-shadow: 1px 1px 3px #000;
 +
            box-shadow: 1px 1px 3px #000;
 +
        }
 +
 +
        .close:hover {
 +
            background: #00d9ff;
 +
        }
 +
  
 
         </style>
 
         </style>
Line 90: Line 144:
 
                 <div class="container" style="padding: 20px;">
 
                 <div class="container" style="padding: 20px;">
 
<br>
 
<br>
 +
                <a href="#openModal">
 +
                <img src="https://static.igem.org/mediawiki/2017/8/81/China.png" width="20%"></a>
 +
 +
                <div id="openModal" class="modalDialog">
 +
                    <div>
 +
                        <a href="#close" title="Close" class="close">X</a>
 +
                        <h2>Modal Box</h2>
 +
                                                <p>受到人類心跳的啟發,我們希望在真核細胞創建一個電生理振盪器。心臟細胞的周期
 +
                        性收縮由竇房結中的小組織協調,其包含去極化和再極化的固有頻率。這種電振盪頻
 +
                        率受環境因素和某些分子物質影響。我們的振盪器是基因修飾的,可興奮的人類胚胎
 +
                        腎(HEK)細胞,具有與竇房結中細胞相同的起搏功能。因我們可以監測心臟細胞,
 +
                        節律隨著細胞膜中依賴性離子通道改變。振盪器可以適應於測量各種基質濃度。通過
 +
                        將特定離子通道插入振盪系統中,可以調整對基質的特異性。構建電振盪器有很多優
 +
                        點。如影響離子通道電導率,細胞變化對振盪頻率產生直接的影響。一旦電池彼此連
 +
                        接(例如通過間隙連接點),它們產生容易從遠處或非侵入性方式測量的電信號。類
 +
                        似於心電圖(ECG)和腦電圖(ECG)測量心臟和腦中電活動的方式。使用該系統,
 +
                        可以用於醫療和生物技術應用的多功能傳感器。像是測量與離子通道相互作用的藥物
 +
                        ,例如抗精神病藥,抗癲癇藥或某類免疫抑制劑。
 +
                        </p>
 +
                       
 +
                    </div>
 +
                </div>
  
 
                 <div id="pi_list">
 
                 <div id="pi_list">

Revision as of 01:48, 1 November 2017


Project Description

HEKcite! Inspired by the human heart rhythm, we aim to create an electrophysiological oscillator from eukaryotic cells. Rhythmic contraction of heart cells is coordinated by a small group of cells located in the sinus node, which have an intrinsic frequency of de- and repolarization. This frequency of electrical oscillation is influenced by environmental parameters as well as certain molecular substrates. The oscillator that we aim to create consists of genetically modified excitable Human Embryonic Kidney (HEK) cells, altered to contain the intrinsic pacemaker ability found in sinus cells. As witnessed in heart cells, the rhythm would be dependent on substrate-activated ion channels in the membrane. As there is a great variety of ion channels available in nature, the oscillator could be modified to measure concentrations of many specific substrates. By integrating a certain ion channel into the oscillating system, specificity for a substrate can be chosen. Building an electrical oscillator from cells has several advantages. Intra- or extracellular changes that influence the conductance of ion channels in the membrane have an immediate impact on the frequency of oscillation. Once these cells are connected to each other (by for example gap-junctions), they generate an electrical signal that can easily be measured from a distance and non-invasively—similar to the way electrocardiography (ECG) and electroencephalography (EEG) measure electrical activity in the heart and brain. A multi-purpose sensor suitable for this system could be developed for medical and biotechnological applications. One such application is the measurement of drugs that interact with ion channels, such as antipsychotics, anti-epileptics or a certain class of immunosuppressants.


X

Modal Box

受到人類心跳的啟發,我們希望在真核細胞創建一個電生理振盪器。心臟細胞的周期 性收縮由竇房結中的小組織協調,其包含去極化和再極化的固有頻率。這種電振盪頻 率受環境因素和某些分子物質影響。我們的振盪器是基因修飾的,可興奮的人類胚胎 腎(HEK)細胞,具有與竇房結中細胞相同的起搏功能。因我們可以監測心臟細胞, 節律隨著細胞膜中依賴性離子通道改變。振盪器可以適應於測量各種基質濃度。通過 將特定離子通道插入振盪系統中,可以調整對基質的特異性。構建電振盪器有很多優 點。如影響離子通道電導率,細胞變化對振盪頻率產生直接的影響。一旦電池彼此連 接(例如通過間隙連接點),它們產生容易從遠處或非侵入性方式測量的電信號。類 似於心電圖(ECG)和腦電圖(ECG)測量心臟和腦中電活動的方式。使用該系統, 可以用於醫療和生物技術應用的多功能傳感器。像是測量與離子通道相互作用的藥物 ,例如抗精神病藥,抗癲癇藥或某類免疫抑制劑。

Inspired by the heart

We drew our inspiration from the versatility and robustness of the heart. It beats continuously over the years, rapidly adapting its pace when necessary.

Creation of the Rhythm

We drew our inspiration from the versatility and robustness of the heart. It beats continuously over the years, rapidly adapting its pace when necessary.

Biosensing

Finally, we aim to influence the pace by varying concentrations of biological effectors. Our main focus is establishing a new form of therapeutic drug monitoring.