Difference between revisions of "Team:KU Leuven/HP/Gold Integrated"

Line 70: Line 70:
 
                     <p>
 
                     <p>
 
In HEKcite we create an oscillating HEK-cell, but for what purpose? Therapeutic drug monitoring is our answer. In the treatment of multiple severe diseases, a stable concentration of drugs is crucial. Steady blood levels determine therapeutic outcomes and increase survival rates. Currently, the most common therapeutic drug monitoring technique is blood sampling. For patients who need lifelong observation, the numerous hospital visits and frequent blood samplings can have a negative effect on the quality of life.
 
In HEKcite we create an oscillating HEK-cell, but for what purpose? Therapeutic drug monitoring is our answer. In the treatment of multiple severe diseases, a stable concentration of drugs is crucial. Steady blood levels determine therapeutic outcomes and increase survival rates. Currently, the most common therapeutic drug monitoring technique is blood sampling. For patients who need lifelong observation, the numerous hospital visits and frequent blood samplings can have a negative effect on the quality of life.
Therefore, we develop a system that allows patients to determine the level of drugs at home. Furthermore, the ease of these measurements allows for daily or even continuous analysis.
+
Therefore, we develop a system that allows patients to determine the level of drugs at home. Furthermore, the ease of these measurements allows for daily or even continuous analysis.</p>
 +
<p>
 
Using this dynamic data collection instead of the static measurements performed in hospitals today, we might increase both therapeutic outcomes and quality of life of patients. In order to investigate the different views on our projects we talked to specialists in several fields where therapeutic drug monitoring is of great importance: transplantations, epileptics and psychotics. Three specialists have provided insights in how they expect our project will influence the lives of their patients and future treatments. We used this information to further shape our project.
 
Using this dynamic data collection instead of the static measurements performed in hospitals today, we might increase both therapeutic outcomes and quality of life of patients. In order to investigate the different views on our projects we talked to specialists in several fields where therapeutic drug monitoring is of great importance: transplantations, epileptics and psychotics. Three specialists have provided insights in how they expect our project will influence the lives of their patients and future treatments. We used this information to further shape our project.
 
                     </p>
 
                     </p>

Revision as of 12:36, 29 August 2017

Human practices

In HEKcite we create an oscillating HEK-cell, but for what purpose? Therapeutic drug monitoring is our answer. In the treatment of multiple severe diseases, a stable concentration of drugs is crucial. Steady blood levels determine therapeutic outcomes and increase survival rates. Currently, the most common therapeutic drug monitoring technique is blood sampling. For patients who need lifelong observation, the numerous hospital visits and frequent blood samplings can have a negative effect on the quality of life. Therefore, we develop a system that allows patients to determine the level of drugs at home. Furthermore, the ease of these measurements allows for daily or even continuous analysis.

Using this dynamic data collection instead of the static measurements performed in hospitals today, we might increase both therapeutic outcomes and quality of life of patients. In order to investigate the different views on our projects we talked to specialists in several fields where therapeutic drug monitoring is of great importance: transplantations, epileptics and psychotics. Three specialists have provided insights in how they expect our project will influence the lives of their patients and future treatments. We used this information to further shape our project.

professor Diethard Monbaliu

Professor Monbaliu is a reputable abdominal transplant surgeon, at the department of microbiology and immunology at UZ Leuven, Belgium. He also part-time teaches the medicine students ‘topographical and radiological anatomy’ and supervises thesis students.

Professor Monbaliu confirmed that there is a need for a more dynamic measurement and a better evaluation of patients’ compliance which could result in less transplant rejection. He brought our attention to Tacrolimus, which is now the most used immunosuppressant. Furthermore, he mentioned the problem of patient variability and how our device should take this into account.

professor Wim Van Paesschen

Prof. dokter Wim Van Paesschen is a neurosurgeon specialized in epilepsy. He also is head of the epilepsy research laboratory, part-time teaches at the faculty of medicine and supervises thesis students.

Professor Van Paesschen confirmed that therapeutic drug monitoring is necessary for anti-epileptics and mentioned the importance of verifying patient compliance. He also showed us that our project has more potential than even we imagined by giving some more examples of possible applications.

professor Iemand anders

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.