Difference between revisions of "Team:TUDelft/Measurement"

(Prototype team page)
 
(Replaced content with "{{:Team:TUDelft/TUDelft}} {{:Team:TUDelft/Head}} {{:Team:TUDelft/Header|cyan|#00bcd4}} {{:Team:TUDelft/Main-Measurement}} {{:Team:TUDelft/Footer}}")
 
Line 1: Line 1:
{{TUDelft}}
+
{{:Team:TUDelft/TUDelft}}
<html>
+
{{:Team:TUDelft/Head}}
 
+
{{:Team:TUDelft/Header|cyan|#00bcd4}}
<div class="column full_size judges-will-not-evaluate">
+
{{:Team:TUDelft/Main-Measurement}}
<h3>★  ALERT! </h3>
+
{{:Team:TUDelft/Footer}}
<p>This page is used by the judges to evaluate your team for the <a href="https://2017.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2017.igem.org/Judging/Awards"> award listed above</a>. </p>
+
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2017.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
</div>
+
<div class="clear"></div>
+
 
+
 
+
 
+
 
+
 
+
 
+
<div class="column full_size">
+
<h1>Measurement</h1>
+
 
+
<p>There are a lot of exciting parts in the Registry, but many parts have still not been characterized. Synthetic Biology needs great measurement approaches for characterizing new parts, and efficient new methods for characterizing many parts at once. If you've done something exciting in the area of Measurement, describe it here!</p>
+
</div>
+
<div class="clear"></div>
+
 
+
<div class="column half_size">
+
<h3>Best Innovation in Measurement Special Prize</h3>
+
<p>If you've done excellent work in measurement, you should consider nominating your team for this special prize. Designing great measurement approaches for characterizing new parts or developing and implementing an efficient new method for characterizing thousands of parts are good examples.
+
<br><br>
+
To compete for the <a href="https://2017.igem.org/Judging/Awards">Best Innovation in Measurement prize</a>, please describe your work on this page and also fill out the description on the <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>.
+
<br><br>
+
You must also delete the message box on the top of this page to be eligible for this prize.
+
 
+
</p>
+
<br>
+
</div>
+
<div class="column half_size">
+
 
+
<h5>Inspiration</h5>
+
<p>You can look at what other teams did to get some inspiration! <br />
+
Here are a few examples:</p>
+
<ul>
+
<li><a href="https://2016.igem.org/Team:Stanford-Brown">2016 Stanford-Brown</a></li>
+
<li><a href="https://2016.igem.org/Team:Genspace">2016 Genspace</a></li>
+
<li><a href="https://2015.igem.org/Team:William_and_Mary">2015 William and Mary</a></li>
+
<li><a href="https://2014.igem.org/Team:Aachen">2014 Aachen  </a></li>
+
</ul>
+
 
+
</div>
+
<div class="clear"></div>
+
</html>
+

Latest revision as of 20:42, 17 October 2017

Case13a
menu

One of the main aims within our project was to develop a detection method to detect the presence of specific RNA sequences without the use of any complicated laboratory equipment. Furthermore, this method should be cheap and widely available to everyone. We indeed succeeded in developing such a method and this page is dedicated to describe how this novel measurement method was implemented in our project. It is based on structures called 'coacervates'.

Coacervates are polymer-rich regions in solutions of mutually attractive polymers. The process of mutually attractive polymers phase-separating into a polymer-rich and polymer-poor phase is known as coacervation. This process can under some circumstances be observed by the naked eye, as coacervates generally cause solutions to be more turbid. A key physical property of coacervates is that they require polymers of a certain length to form. In general, only polymers that are ‘long enough’ form coacervates.

Figure 1: Schematic description of coacervation. Long, mutually attractive polymers can phase separate into dense, polymer-rich regions known as coacervates, and a polymer-poor region consisting of the solvent.

The underlying reason for this can be explained theoretically and experimentally. These latter facts directly imply that (changes in) polymer length can be visualized to the naked eye, which we utilized to design a novel detection method coined CINDY Seq. However, as we will argue in greater detail below, the method has potential to serve as a far broader method to characterize existing and future BioBricks, and the activity of many enzymes that show synthesis or degradation of any (coacervating) polymer.