Difference between revisions of "Team:Manchester/Model"

 
(17 intermediate revisions by 3 users not shown)
Line 38: Line 38:
 
   opacity: 1;
 
   opacity: 1;
 
   transition: 0.3s ease-in-out;
 
   transition: 0.3s ease-in-out;
 +
  overflow: hidden
 
}
 
}
  
Line 58: Line 59:
 
   letter-spacing: 10px;
 
   letter-spacing: 10px;
 
   opacity: 1
 
   opacity: 1
 +
}
 +
 +
.somemargin {
 +
  border: solid 10px #bcb3c5;
 +
  border-radius: 10%;
 +
  margin: 2%;
 +
  padding: 5px
 
}
 
}
  
Line 67: Line 75:
 
<div class="clear"></div>
 
<div class="clear"></div>
  
<div class="col-md-12 sectionfirst" style="">
+
<div class="col-md-12 sectionfirst" style="background-color: #fbf9f8!important">
 
<h2 class="border" style="margin-top: 5vh; text-align: center">Modelling</h2>
 
<h2 class="border" style="margin-top: 5vh; text-align: center">Modelling</h2>
 
<br/>
 
<br/>
Line 74: Line 82:
 
<div class="col-md-12" style="padding-top: 50px; background-color: #fbf9f8!important">
 
<div class="col-md-12" style="padding-top: 50px; background-color: #fbf9f8!important">
 
<div class="plan" style="background-color: #fbf9f8!important; padding: 0px 12vw">
 
<div class="plan" style="background-color: #fbf9f8!important; padding: 0px 12vw">
 
+
<p>We used modelling in three ways to inform different parts of the project:</p>
<p style="margin-left: 40px">1. Continuous culture modelling was used to predict the rate at which Phosphostore devices could be produced on different substrates. This allowed us to estimate the yearly cost of treating wastewater using phosphostore. As a result we performed a major re-design of the intended Phosphostore device, assessing the cost reduction potential of different growth conditions and experimental strategies by computational modelling</p>
+
<p style="margin-left: 40px">1. The statistical Design of Experiments (DoE) was used to design the most efficient experiments to determine the factors influencing the expression of our key enzyme. Two rounds of DoE enabled us to identify the optimal conditions for testing of our experimental system.</p>
<p style="margin-left: 40px">2. We used an innovative ensemble modelling approach to predict the operating characteristics of our phosphate starvation operon as a regulatory system for controlling microcompartment synthesis. This helped us choose the appropriate regulatory parts for our experimental design</p>
+
<p style="margin-left: 40px">2. Continuous culture modelling was used to predict the rate at which Phosphostore devices could be produced on different substrates. This allowed us to estimate the yearly cost of treating wastewater using phosphostore. As a result we performed a major re-design of the intended Phosphostore device, assessing the cost reduction potential of different growth conditions and experimental strategies by computational modelling.</p>
<p style="margin-left: 40px">3. We used statistical Design of Experiments (DoE) to design the most efficient experiments to determine the factors influencing the activity of our key enzyme. Two rounds of DoE enabled us to identify the optimal conditions for testing of our experimental system</p>
+
<p style="margin-left: 40px">3. An innovative ensemble modelling approach was used to predict the behaviour of our recombinant phosphate starvation operon in addition to native PHO regulon as a regulatory system for controlling microcompartment synthesis. This helped us to choose the appropriate regulatory parts for our experimental design.</p>
 
</div>
 
</div>
 
</div>
 
</div>
  
<div class="col-md-12" style="padding: 6vw; background-color: #fbf9f8!important">
+
<div class="col-md-12" style="padding: 10px 2vw; background-color: #fbf9f8!important">
<div class="col-md-4">
+
 
<img src="https://static.igem.org/mediawiki/2017/8/8d/T--Manchester--DOElogo.jpg"/>
+
<div class="col-md-4"><div class="somemargin">
 +
<a href="https://2017.igem.org/Team:Manchester/Model/DoE"><img src="https://static.igem.org/mediawiki/2017/8/8d/T--Manchester--DOElogo.jpg" width="100%"/></a>
 
<br>
 
<br>
 
<p style="text-align: center" "font-size: 24px!important"><b>Design of Experiments</b></p>
 
<p style="text-align: center" "font-size: 24px!important"><b>Design of Experiments</b></p>
</div>
+
</div></div>
  
<div class="col-md-4">
+
<div class="col-md-4"><div class="somemargin">
<a href="https://2017.igem.org/Team:Manchester/Model/Continuous_Culture"><img src="https://static.igem.org/mediawiki/2017/5/59/T--Manchester--Chemostat_logo.png" /></a>
+
<a href="https://2017.igem.org/Team:Manchester/Model/Continuous_Culture"><img src="https://static.igem.org/mediawiki/2017/5/59/T--Manchester--Chemostat_logo.png"/></a>
 
<br>
 
<br>
 
<p style="text-align: center" "font-size: 24px!important"><b>Continuous Culture</b></p>
 
<p style="text-align: center" "font-size: 24px!important"><b>Continuous Culture</b></p>
</div>
+
</div></div>
  
<div class="col-md-4">
+
<div class="col-md-4"><div class="somemargin">
<a href="https://2017.igem.org/Team:Manchester/Model/PSO"><img src="https://static.igem.org/mediawiki/2017/1/10/T--Manchester--Operon_logo.jpg"/></a>
+
<a href="https://2017.igem.org/Team:Manchester/Model/PSO"><img src="https://static.igem.org/mediawiki/2017/1/10/T--Manchester--Operon_logo.jpg" width="100%"/></a>
 
<br>
 
<br>
 
<p style="text-align: center" "font-size: 24px!important"><b>Phosphate Starvation Operon</b></p>
 
<p style="text-align: center" "font-size: 24px!important"><b>Phosphate Starvation Operon</b></p>
</div>
+
</div></div>
  
 
<div class="col-md-12" style="padding-top: 50px"></div>
 
<div class="col-md-12" style="padding-top: 50px"></div>

Latest revision as of 18:44, 31 October 2017

Modelling


We used modelling in three ways to inform different parts of the project:

1. The statistical Design of Experiments (DoE) was used to design the most efficient experiments to determine the factors influencing the expression of our key enzyme. Two rounds of DoE enabled us to identify the optimal conditions for testing of our experimental system.

2. Continuous culture modelling was used to predict the rate at which Phosphostore devices could be produced on different substrates. This allowed us to estimate the yearly cost of treating wastewater using phosphostore. As a result we performed a major re-design of the intended Phosphostore device, assessing the cost reduction potential of different growth conditions and experimental strategies by computational modelling.

3. An innovative ensemble modelling approach was used to predict the behaviour of our recombinant phosphate starvation operon in addition to native PHO regulon as a regulatory system for controlling microcompartment synthesis. This helped us to choose the appropriate regulatory parts for our experimental design.


Design of Experiments


Continuous Culture


Phosphate Starvation Operon