Difference between revisions of "Team:Manchester/Model"

 
(12 intermediate revisions by 3 users not shown)
Line 33: Line 33:
 
.col-md-4 img {
 
.col-md-4 img {
 
   display: block;
 
   display: block;
   height: 100%;
+
   height: 400px;
 
   max-width: 400px;
 
   max-width: 400px;
 
   margin: 0px auto;
 
   margin: 0px auto;
 
   opacity: 1;
 
   opacity: 1;
 
   transition: 0.3s ease-in-out;
 
   transition: 0.3s ease-in-out;
 +
  overflow: hidden
 
}
 
}
  
Line 64: Line 65:
 
   border-radius: 10%;
 
   border-radius: 10%;
 
   margin: 2%;
 
   margin: 2%;
   padding: 2px
+
   padding: 5px
 
}
 
}
  
Line 81: Line 82:
 
<div class="col-md-12" style="padding-top: 50px; background-color: #fbf9f8!important">
 
<div class="col-md-12" style="padding-top: 50px; background-color: #fbf9f8!important">
 
<div class="plan" style="background-color: #fbf9f8!important; padding: 0px 12vw">
 
<div class="plan" style="background-color: #fbf9f8!important; padding: 0px 12vw">
 
+
<p>We used modelling in three ways to inform different parts of the project:</p>
<p style="margin-left: 40px">1. Continuous culture modelling was used to predict the rate at which Phosphostore devices could be produced on different substrates. This allowed us to estimate the yearly cost of treating wastewater using phosphostore. As a result we performed a major re-design of the intended Phosphostore device, assessing the cost reduction potential of different growth conditions and experimental strategies by computational modelling</p>
+
<p style="margin-left: 40px">1. The statistical Design of Experiments (DoE) was used to design the most efficient experiments to determine the factors influencing the expression of our key enzyme. Two rounds of DoE enabled us to identify the optimal conditions for testing of our experimental system.</p>
<p style="margin-left: 40px">2. We used an innovative ensemble modelling approach to predict the operating characteristics of our phosphate starvation operon as a regulatory system for controlling microcompartment synthesis. This helped us choose the appropriate regulatory parts for our experimental design</p>
+
<p style="margin-left: 40px">2. Continuous culture modelling was used to predict the rate at which Phosphostore devices could be produced on different substrates. This allowed us to estimate the yearly cost of treating wastewater using phosphostore. As a result we performed a major re-design of the intended Phosphostore device, assessing the cost reduction potential of different growth conditions and experimental strategies by computational modelling.</p>
<p style="margin-left: 40px">3. We used statistical Design of Experiments (DoE) to design the most efficient experiments to determine the factors influencing the activity of our key enzyme. Two rounds of DoE enabled us to identify the optimal conditions for testing of our experimental system</p>
+
<p style="margin-left: 40px">3. An innovative ensemble modelling approach was used to predict the behaviour of our recombinant phosphate starvation operon in addition to native PHO regulon as a regulatory system for controlling microcompartment synthesis. This helped us to choose the appropriate regulatory parts for our experimental design.</p>
 
</div>
 
</div>
 
</div>
 
</div>
  
 
<div class="col-md-12" style="padding: 10px 2vw; background-color: #fbf9f8!important">
 
<div class="col-md-12" style="padding: 10px 2vw; background-color: #fbf9f8!important">
 +
 
<div class="col-md-4"><div class="somemargin">
 
<div class="col-md-4"><div class="somemargin">
<img src="https://static.igem.org/mediawiki/2017/8/8d/T--Manchester--DOElogo.jpg"/>
+
<a href="https://2017.igem.org/Team:Manchester/Model/DoE"><img src="https://static.igem.org/mediawiki/2017/8/8d/T--Manchester--DOElogo.jpg" width="100%"/></a>
 
<br>
 
<br>
 
<p style="text-align: center" "font-size: 24px!important"><b>Design of Experiments</b></p>
 
<p style="text-align: center" "font-size: 24px!important"><b>Design of Experiments</b></p>
Line 96: Line 98:
  
 
<div class="col-md-4"><div class="somemargin">
 
<div class="col-md-4"><div class="somemargin">
<a href="https://2017.igem.org/Team:Manchester/Model/Continuous_Culture"><img src="https://static.igem.org/mediawiki/2017/5/59/T--Manchester--Chemostat_logo.png" /></a>
+
<a href="https://2017.igem.org/Team:Manchester/Model/Continuous_Culture"><img src="https://static.igem.org/mediawiki/2017/5/59/T--Manchester--Chemostat_logo.png"/></a>
 
<br>
 
<br>
 
<p style="text-align: center" "font-size: 24px!important"><b>Continuous Culture</b></p>
 
<p style="text-align: center" "font-size: 24px!important"><b>Continuous Culture</b></p>
Line 102: Line 104:
  
 
<div class="col-md-4"><div class="somemargin">
 
<div class="col-md-4"><div class="somemargin">
<a href="https://2017.igem.org/Team:Manchester/Model/PSO"><img src="https://static.igem.org/mediawiki/2017/1/10/T--Manchester--Operon_logo.jpg"/></a>
+
<a href="https://2017.igem.org/Team:Manchester/Model/PSO"><img src="https://static.igem.org/mediawiki/2017/1/10/T--Manchester--Operon_logo.jpg" width="100%"/></a>
 
<br>
 
<br>
 
<p style="text-align: center" "font-size: 24px!important"><b>Phosphate Starvation Operon</b></p>
 
<p style="text-align: center" "font-size: 24px!important"><b>Phosphate Starvation Operon</b></p>

Latest revision as of 18:44, 31 October 2017

Modelling


We used modelling in three ways to inform different parts of the project:

1. The statistical Design of Experiments (DoE) was used to design the most efficient experiments to determine the factors influencing the expression of our key enzyme. Two rounds of DoE enabled us to identify the optimal conditions for testing of our experimental system.

2. Continuous culture modelling was used to predict the rate at which Phosphostore devices could be produced on different substrates. This allowed us to estimate the yearly cost of treating wastewater using phosphostore. As a result we performed a major re-design of the intended Phosphostore device, assessing the cost reduction potential of different growth conditions and experimental strategies by computational modelling.

3. An innovative ensemble modelling approach was used to predict the behaviour of our recombinant phosphate starvation operon in addition to native PHO regulon as a regulatory system for controlling microcompartment synthesis. This helped us to choose the appropriate regulatory parts for our experimental design.


Design of Experiments


Continuous Culture


Phosphate Starvation Operon