Difference between revisions of "Team:Manchester/Model"

 
(147 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
<html>
 
<html>
 
<head>
 
<head>
 +
 +
<style>
 +
 +
 +
h4 {
 +
  font-size: 35px!important;
 +
  font-weight: 400;
 +
  font-family: 'Calibri'!important;
 +
  padding: 2%!important;
 +
  text-align: center;
 +
}
 +
 +
h2 {
 +
  font-size: 40px!important;
 +
  font-weight: 400;
 +
  font-family: 'Calibri'!important;
 +
  padding: 2%!important;
 +
  text-align: center;
 +
}
 +
 +
 +
p {
 +
  text-align: justify;
 +
  text-justify: inter-word;
 +
  font-family: 'Calibri', sans-serif;
 +
}
 +
 +
 +
.col-md-4 img {
 +
  display: block;
 +
  height: 400px;
 +
  max-width: 400px;
 +
  margin: 0px auto;
 +
  opacity: 1;
 +
  transition: 0.3s ease-in-out;
 +
  overflow: hidden
 +
}
 +
 +
.col-md-4 img:hover {
 +
  opacity: 0.7;
 +
}
 +
 +
.sectionfirst {
 +
  margin-top: 50px!important;
 +
  padding-top: 10vh;
 +
  height: 30vh;
 +
  background: transparent;
 +
  background-size: cover
 +
}
 +
 +
.border {
 +
  background-color: #c4c4c4;
 +
  color: #fff;
 +
  padding: 18px;
 +
  letter-spacing: 10px;
 +
  opacity: 1
 +
}
 +
 +
.somemargin {
 +
  border: solid 10px #bcb3c5;
 +
  border-radius: 10%;
 +
  margin: 2%;
 +
  padding: 5px
 +
}
 +
 +
</style>
 +
 
</head>
 
</head>
 
<body>
 
<body>
  
<div class="col-md-12">
+
<div class="clear"></div>
<h1>modellllllssssssssssssssssssssss</h1>
+
</div>
+
  
<div class="col-md-4">
+
<div class="col-md-12 sectionfirst" style="background-color: #fbf9f8!important">
<p>blah blah blah with some images</p>
+
<h2 class="border" style="margin-top: 5vh; text-align: center">Modelling</h2>
 +
<br/>
 
</div>
 
</div>
  
<div class="col-md-4">
+
<div class="col-md-12" style="padding-top: 50px; background-color: #fbf9f8!important">
<p>blah blah blah with some images</p>
+
<div class="plan" style="background-color: #fbf9f8!important; padding: 0px 12vw">
 +
<p>We used modelling in three ways to inform different parts of the project:</p>
 +
<p style="margin-left: 40px">1. The statistical Design of Experiments (DoE) was used to design the most efficient experiments to determine the factors influencing the expression of our key enzyme. Two rounds of DoE enabled us to identify the optimal conditions for testing of our experimental system.</p>
 +
<p style="margin-left: 40px">2. Continuous culture modelling was used to predict the rate at which Phosphostore devices could be produced on different substrates. This allowed us to estimate the yearly cost of treating wastewater using phosphostore. As a result we performed a major re-design of the intended Phosphostore device, assessing the cost reduction potential of different growth conditions and experimental strategies by computational modelling.</p>
 +
<p style="margin-left: 40px">3. An innovative ensemble modelling approach was used to predict the behaviour of our recombinant phosphate starvation operon in addition to native PHO regulon as a regulatory system for controlling microcompartment synthesis. This helped us to choose the appropriate regulatory parts for our experimental design.</p>
 +
</div>
 
</div>
 
</div>
  
<div class="col-md-4">
+
<div class="col-md-12" style="padding: 10px 2vw; background-color: #fbf9f8!important">
<p>blah blah blah with some images</p>
+
 
 +
<div class="col-md-4"><div class="somemargin">
 +
<a href="https://2017.igem.org/Team:Manchester/Model/DoE"><img src="https://static.igem.org/mediawiki/2017/8/8d/T--Manchester--DOElogo.jpg" width="100%"/></a>
 +
<br>
 +
<p style="text-align: center" "font-size: 24px!important"><b>Design of Experiments</b></p>
 +
</div></div>
 +
 
 +
<div class="col-md-4"><div class="somemargin">
 +
<a href="https://2017.igem.org/Team:Manchester/Model/Continuous_Culture"><img src="https://static.igem.org/mediawiki/2017/5/59/T--Manchester--Chemostat_logo.png"/></a>
 +
<br>
 +
<p style="text-align: center" "font-size: 24px!important"><b>Continuous Culture</b></p>
 +
</div></div>
 +
 
 +
<div class="col-md-4"><div class="somemargin">
 +
<a href="https://2017.igem.org/Team:Manchester/Model/PSO"><img src="https://static.igem.org/mediawiki/2017/1/10/T--Manchester--Operon_logo.jpg" width="100%"/></a>
 +
<br>
 +
<p style="text-align: center" "font-size: 24px!important"><b>Phosphate Starvation Operon</b></p>
 +
</div></div>
 +
 
 +
<div class="col-md-12" style="padding-top: 50px"></div>
 +
</div>
 +
</div>
 
</div>
 
</div>
  

Latest revision as of 18:44, 31 October 2017

Modelling


We used modelling in three ways to inform different parts of the project:

1. The statistical Design of Experiments (DoE) was used to design the most efficient experiments to determine the factors influencing the expression of our key enzyme. Two rounds of DoE enabled us to identify the optimal conditions for testing of our experimental system.

2. Continuous culture modelling was used to predict the rate at which Phosphostore devices could be produced on different substrates. This allowed us to estimate the yearly cost of treating wastewater using phosphostore. As a result we performed a major re-design of the intended Phosphostore device, assessing the cost reduction potential of different growth conditions and experimental strategies by computational modelling.

3. An innovative ensemble modelling approach was used to predict the behaviour of our recombinant phosphate starvation operon in addition to native PHO regulon as a regulatory system for controlling microcompartment synthesis. This helped us to choose the appropriate regulatory parts for our experimental design.


Design of Experiments


Continuous Culture


Phosphate Starvation Operon