Difference between revisions of "Team:Missouri Rolla"

(Prototype team page)
 
(Project description)
Line 1: Line 1:
 
{{Missouri_Rolla}}
 
{{Missouri_Rolla}}
 
<html>
 
<html>
 +
<div class="column full_size" >
 +
<h1> Missouri University of Science and Technology iGEM Team 2017 </h1>
 +
<p>We aim to harness the passive accumulation of soil and groundwater contaminants in plants for the detection of pollutants. Plant-based biosensors have immense benefits over analytical chemistry or potentiometric techniques because they continuously sample a large volume of the environment, provide warning to laypeople, and achieve the amazing specificity and sensitivity of biomolecules.
  
 
+
We are developing two approaches to biosensing contaminants with plants. Trees' uptake of pollutants through extensive root systems is currently utilized for groundwater monitoring by analyzing cores taken out of trees in a laboratory. Our engineered Escherichia coli would live off tree sap in a filtered insert to these holes and change color through a chromo- or fluorescent protein when the pollutant is detected in the tree tissue. Meanwhile, our standalone Arabidopsis thaliana plants would signal the presence of a pollutant by degrading its green chlorophyll and expressing a chromo- or fluorescent protein. Both systems are based on important developments in biosensors, namely the creation of synthetic signal transduction systems in bacteria and plants and the redesign of natural periplasmic binding proteins for the detection of new ligands. Taken together, these advances could allow a computationally-designed periplasmic binding protein which binds a contaminant of interest extracellularly to transfer the signal through a phosphorylation cascade and produce a transcriptional response. We will create circuits to implement these synthetic signal transduction systems, attempt to computationally design periplasmic binding proteins for new ligands, and test the efficacy of our two biosensing approaches. We hope our final systems will strongly transcribe our reporter in an orthogonal detection which is obvious to the eye.</p>
<div class="column full_size" >
+
<img src="http://placehold.it/2000x300/d3d3d3/f2f2f2">
+
</div>
+
 
+
 
+
 
+
<div class="column full_size" >
+
<h1> Welcome to iGEM 2017! </h1>
+
<p>Your team has been approved and you are ready to start the iGEM season! </p>
+
 
</div>  
 
</div>  
  
 
<div class="clear"></div>
 
<div class="clear"></div>
 
<div class="column half_size" >
 
<h5>Before you start: </h5>
 
<p> Please read the following pages:</p>
 
<ul>
 
<li>  <a href="https://2017.igem.org/Competition">Competition Hub</a> </li>
 
<li> <a href="https://2017.igem.org/Competition/Deliverables/Wiki">Wiki Requirements page</a></li>
 
<li> <a href="https://2017.igem.org/Resources/Template_Documentation">Template documentation</a></li>
 
</ul>
 
</div>
 
 
<div class="column half_size" >
 
<div class="highlight">
 
<h5> Styling your wiki </h5>
 
<p>You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.</p>
 
<p>While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.</p>
 
</div>
 
</div>
 
 
<div class="column full_size" >
 
<h5> Wiki template information </h5>
 
<p>We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the <a href="https://2017.igem.org/Judging/Pages_for_Awards">Pages for awards</a> link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!</p>
 
 
</div>
 
 
 
 
 
<div class="column half_size" >
 
<h5> Editing your wiki </h5>
 
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>
 
<p> <a href="https://2017.igem.org/wiki/index.php?title=Team:Example&action=edit"> </a>Use WikiTools - Edit in the black menu bar to edit this page</p>
 
 
</div>
 
 
 
<div class="column half_size" >
 
<h5>Tips</h5>
 
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
 
<ul>
 
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
 
<li>Be clear about what you are doing and how you plan to do this.</li>
 
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
 
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
 
<li>Avoid using very small fonts and low contrast colors; information should be easy to read.  </li>
 
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="https://2017.igem.org/Calendar">iGEM 2017 calendar</a> </li>
 
<li>Have lots of fun! </li>
 
</ul>
 
</div>
 
 
 
<div class="column half_size" >
 
<h5>Inspiration</h5>
 
<p> You can also view other team wikis for inspiration! Here are some examples:</p>
 
<ul>
 
<li> <a href="https://2014.igem.org/Team:SDU-Denmark/"> 2014 SDU Denmark </a> </li>
 
<li> <a href="https://2014.igem.org/Team:Aalto-Helsinki">2014 Aalto-Helsinki</a> </li>
 
<li> <a href="https://2014.igem.org/Team:LMU-Munich">2014 LMU-Munich</a> </li>
 
<li> <a href="https://2014.igem.org/Team:Michigan"> 2014 Michigan</a></li>
 
<li> <a href="https://2014.igem.org/Team:ITESM-Guadalajara">2014 ITESM-Guadalajara </a></li>
 
<li> <a href="https://2014.igem.org/Team:SCU-China"> 2014 SCU-China </a></li>
 
</ul>
 
</div>
 
 
<div class="column half_size" >
 
<h5> Uploading pictures and files </h5>
 
<p> You can upload your pictures and files to the iGEM 2017 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name. <br />
 
When you upload, set the "Destination Filename" to <br><code>T--YourOfficialTeamName--NameOfFile.jpg</code>. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)<br><br>
 
 
<a href="https://2017.igem.org/Special:Upload">
 
UPLOAD FILES
 
</a>
 
</p>
 
</div>
 
  
  

Revision as of 02:13, 1 July 2017

Missouri_Rolla

Missouri University of Science and Technology iGEM Team 2017

We aim to harness the passive accumulation of soil and groundwater contaminants in plants for the detection of pollutants. Plant-based biosensors have immense benefits over analytical chemistry or potentiometric techniques because they continuously sample a large volume of the environment, provide warning to laypeople, and achieve the amazing specificity and sensitivity of biomolecules. We are developing two approaches to biosensing contaminants with plants. Trees' uptake of pollutants through extensive root systems is currently utilized for groundwater monitoring by analyzing cores taken out of trees in a laboratory. Our engineered Escherichia coli would live off tree sap in a filtered insert to these holes and change color through a chromo- or fluorescent protein when the pollutant is detected in the tree tissue. Meanwhile, our standalone Arabidopsis thaliana plants would signal the presence of a pollutant by degrading its green chlorophyll and expressing a chromo- or fluorescent protein. Both systems are based on important developments in biosensors, namely the creation of synthetic signal transduction systems in bacteria and plants and the redesign of natural periplasmic binding proteins for the detection of new ligands. Taken together, these advances could allow a computationally-designed periplasmic binding protein which binds a contaminant of interest extracellularly to transfer the signal through a phosphorylation cascade and produce a transcriptional response. We will create circuits to implement these synthetic signal transduction systems, attempt to computationally design periplasmic binding proteins for new ligands, and test the efficacy of our two biosensing approaches. We hope our final systems will strongly transcribe our reporter in an orthogonal detection which is obvious to the eye.