Difference between revisions of "Team:Lethbridge/Description"

 
(69 intermediate revisions by 10 users not shown)
Line 3: Line 3:
 
{{Team:Lethbridge/navbar}}
 
{{Team:Lethbridge/navbar}}
 
{{Team:Lethbridge/assets/allpages.css}}
 
{{Team:Lethbridge/assets/allpages.css}}
 +
{{Team:Lethbridge/top}}
 
<html>
 
<html>
 
<style>
 
<style>
Line 8: Line 9:
 
/* RULES FOR ALL PAGES ARE PART OF THE ALLPAGES.CSS TEMPLATE*/
 
/* RULES FOR ALL PAGES ARE PART OF THE ALLPAGES.CSS TEMPLATE*/
 
/* RULES FOR THIS PAGE ONLY */
 
/* RULES FOR THIS PAGE ONLY */
 
 
.contentDiv {display: inline-block; vertical-align: top}
 
.contentDiv {display: inline-block; vertical-align: top}
  
Line 14: Line 14:
  
 
#text40 {width: 40%; align:left}
 
#text40 {width: 40%; align:left}
 +
#text35 {width: 35%; align:left}
 +
 +
@media only screen and (max-width: 500px) {
 +
    #allContent img {width:90%; height: 90%}
 +
    #imgHalf img {width:40%; height: 40%;}
 +
    #imageBubble img {width:100px; height: 100px}}
  
 
/* BALLOON CSS STARTS */
 
/* BALLOON CSS STARTS */
Line 51: Line 57:
 
/* BALLOON CSS ENDS */
 
/* BALLOON CSS ENDS */
 
</style>
 
</style>
</head>
 
 
<body>
 
<body>
 
<div><img src="https://static.igem.org/mediawiki/2017/4/4c/Banner_PRdescription.png"  class="bannerImg"></div>
 
<div><img src="https://static.igem.org/mediawiki/2017/4/4c/Banner_PRdescription.png"  class="bannerImg"></div>
 
<div id="allContent">
 
<div id="allContent">
+
<br>
 +
<center>
 +
<form>
 +
    <input class="tealButton" type="button" value="Applications" onclick="window.location.href='#anchor1'" />
 +
</form>
 +
   
 +
<form>
 +
    <input class="tealButton" type="button" value="Types of Cell-free Systems" onclick="window.location.href='#anchor2'" />
 +
</form>
 +
   
 +
<form>
 +
    <input class="tealButton" type="button" value="Our System" onclick="window.location.href='#anchor3'" />
 +
</form>
 +
   
 +
<form>
 +
    <input class="tealButton" type="button" value="Recent Advancements" onclick="window.location.href='#anchor4'" />
 +
</form>
 +
<div style="clear:both"></div>
 +
</center>
 
<br><br>
 
<br><br>
  
 
<div style="margin-left:10%; margin-right:10%">
 
<div style="margin-left:10%; margin-right:10%">
<p class="text12" style="font-size: calc(22px + 0.5vw) !important; text-align: center !important">  <b> “The International Genetically Engineered Machine (iGEM)  Foundation is an independent, non-profit organization dedicated to <span style="color: #f5af3e">EDUCATION</span> and <span style="color: #1fb151">COMPETITION</span>, the ADVANCEMENT of synthetic biology, and the development of an <span style="color: #2890D2">OPEN COMMUNITY</span> and collaboration.” </b></p>
+
    <p class="text12" style="font-size: calc(22px + 0.5vw) !important; text-align: center !important">  <b> “The International Genetically Engineered Machine (iGEM)  Foundation is an independent, non-profit organization dedicated to <span style="color: #f5af3e">EDUCATION</span> and <span style="color: #703a96">COMPETITION</span>, the <span style="color: #377b7e">ADVANCEMENT</span> of synthetic biology, and the development of an <span style="color: #1fb151">OPEN COMMUNITY</span> and collaboration.” </b></p>
</div>
+
</div><br>
 
+
<br>
+
  
 
<div style="margin-left:5%; margin-right:5%">
 
<div style="margin-left:5%; margin-right:5%">
<p class="text12" style="font-size: calc(17px + 0.5vw) !important; text-align: center !important"> For our tenth year as an iGEM team, we wanted to give back to the community and looked to the iGEM's mission statement for inspiration. To align our project with the foundation,  we developed a tool to advance synthetic biology and increase its accessibility to novices, hobbyists and experts.
+
    <p class="text12" style="font-size: calc(17px + 0.5vw) !important; text-align: center !important"> For our tenth year as an iGEM team, we wanted to give back to the community and looked to the iGEM mission statement for inspiration. To align our project with the foundation,  we developed a tool to advance synthetic biology and increase its accessibility to novices, hobbyists and experts.</p>
</p>
+
 
</div>
 
</div>
  
  <div class="segmentDiv">
+
<div class="segmentDiv">
        <div class="centerContainer">
+
    <div class="centerContainer">
<h2 class="segmentHeader">Cell-free Systems</h2>
+
        <h2 class="segmentHeader">Cell-free Systems</h2>
<p class="text12">  Cell-free systems allow for the reliable and consistent expression of recombinant proteins outside of a living cell, bypassing issues with genetic regulation and cellular noise [1].  
+
        <p class="text12j">  Cell-free systems allow for a reliable and consistent expression of recombinant proteins outside of a living cell, bypassing issues with genetic regulation and cellular noise [1].</p>
</p>
+
       
 
+
<img style="float:right; margin-left:20px; margin-right:60px; margin-top:30px; height: 330px;" src="https://static.igem.org/mediawiki/2017/d/d6/T--Lethbridge--cellfreepic.png" class="img-responsive">
<img style="float:right; margin-left:20px; margin-right:60px; margin-top:30px; width:  ; height: 330px;" src="https://static.igem.org/mediawiki/2017/d/d6/T--Lethbridge--cellfreepic.png" class="img-responsive">
+
<p class="text12">  Such systems are advantageous over cell-based synthetic biology due to the:</p>
<p class="text12">  Such systems are advantageous over cell-based synthetic biology due to the:
+
<ul class="text12" style="list-style: disc">
</p>
+
<li class="text12">Capability of <b>tolerating toxins</b> normally detrimental to the cell</li>
<ul class="text12" style="list-style: none">
+
<li class="text12">Ability to direct all energy resources to the application, increasing the <b>freedom of design</b></li>
<li class="text12">- Ability to <b>tolerate toxins</b> normally detrimental to the cell</li>
+
<li class="text12">Inherent feature of <b>reduced biocontamination</b>, as components do not replicate mutate or evolve</li>
<li class="text12">- Ability to direct all energy resources to the application, increasing the <b>freedom of design</b></li>
+
<li class="text12">Easy <b>control of transcription and translation</b> in an open environment</li>
<li class="text12">- Inherent feature of <b>reduced bio-contamination</b>, as components do not replicate mutate or evolve</li>
+
<li class="text12">Easy incorporation of <b>unnatural amino acids</b></li>
<li class="text12">- Easy <b>control of transcription and translation</b> in an open environment</li>
+
<li class="text12">Capacity to <b>modulate the environment</b> for optimal protein expression</li>
<li class="text12">- Easy incorporation of <b>unnatural amino acids</b></li>
+
<li class="text12">Rapid design-build-test cycle</li>
<li class="text12">- Ability to <b>modulate the environment</b> for optimal protein expression</li>
+
<li class="text12">Proficiency of using both linear and circular template DNA</li>
<li class="text12">- Rapid design-build-test cycle</li>
+
<li class="text12">- Ability to use linear and circular template DNA</li>
+
 
</ul>
 
</ul>
<br><br>
 
<div style="clear:both"></div><br><br>
 
<h2 class="segmentHeader">Applications</h2>
 
  
<p class="text12">  Emerging as a new platform for synthetic biology, cell-free systems have shown potential for use in a variety of applications exemplifying the utility of such systems [2,3].  
+
<div style="clear:both" id="anchor1"></div><br><br><br><br>
</p>
+
 
 +
<div class="segmentDiv">
 +
    <div class="centerContainer">
 +
        <h2 class="segmentHeader">Applications</h2>
 +
        <p class="text12j">  Emerging as a new platform for synthetic biology, cell-free systems have shown potential for use in a variety of applications exemplifying the utility of such systems [2,3].</p>
 +
    </div>
 +
</div>
  
 
<div id="balloonContainer">
 
<div id="balloonContainer">
 
     <div class="designBalloon">
 
     <div class="designBalloon">
<!--<p>-->
 
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Using a bottom-up approach, cell-free systems are important for the development of artificial life by providing the necessary biomachinery for a reduced system. [4,5]" data-balloon-pos="up">
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Using a bottom-up approach, cell-free systems are important for the development of artificial life by providing the necessary biomachinery for a reduced system. [4,5]" data-balloon-pos="up">
 
             <a class="designApp" href="#Financial" >
 
             <a class="designApp" href="#Financial" >
             <img src="https://static.igem.org/mediawiki/2017/d/dd/T--Lethbridge--Design-AC.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/d/dd/T--Lethbridge--Design-AC.png" id="imageBubble" height="190" width=190 />
             <img src="https://static.igem.org/mediawiki/2017/f/fc/Bubble_PRappAC2.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/f/fc/Bubble_PRappAC2.png" id="imageBubble" height="190" width=190 />
 
             </a>
 
             </a>
 
             </button>
 
             </button>
Line 107: Line 127:
 
   
 
   
 
     <div class="designBalloon">
 
     <div class="designBalloon">
             <button class="btn-link" data-balloon-length="large" data-balloon="Only the enzymes required for a metabolic pathway are needed, allowing for optimization of conversion efficiency. Cell-free systems can be used for the production of toxic components, such as biofuels, and for the synthesis of other important biomolecules or chemicals. [6,7]"
+
             <button class="btn-link" data-balloon-length="large" data-balloon="Only the enzymes required for a metabolic pathway are needed, allowing for optimization of conversion efficiency. Cell-free systems can be used for the production of toxic components, such as biofuels, and for the synthesis of other important biomolecules or chemicals. [6,7]" data-balloon-pos="up">
data-balloon-pos="up">
+
 
             <a class="designApp" href="#Health">
 
             <a class="designApp" href="#Health">
             <img src="https://static.igem.org/mediawiki/2017/1/1f/Bubble_PRappBC1.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/1/1f/Bubble_PRappBC1.png" id="imageBubble" height="190" width=190 />
             <img src="https://static.igem.org/mediawiki/2017/a/af/Bubble_PRappBC2.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/a/af/Bubble_PRappBC2.png" id="imageBubble" height="190" width=190 />
 
             </a>
 
             </a>
 
             </button>
 
             </button>
Line 119: Line 138:
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems can be used for the development of sensors that are designed to detect analytes of interest and intuitively turn on production of a biomolecule in response to an environmental stimuli. [8]" data-balloon-pos="up">   
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems can be used for the development of sensors that are designed to detect analytes of interest and intuitively turn on production of a biomolecule in response to an environmental stimuli. [8]" data-balloon-pos="up">   
 
             <a class="designApp" href="#Indu">
 
             <a class="designApp" href="#Indu">
             <img src="https://static.igem.org/mediawiki/2017/b/b7/Bubble_PRappBS1.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/b/b7/Bubble_PRappBS1.png" id="imageBubble" height="190" width=190 />
             <img src="https://static.igem.org/mediawiki/2017/1/11/Bubble_PRappBS2.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/1/11/Bubble_PRappBS2.png" id="imageBubble" height="190" width=190 />
 
             </a>
 
             </a>
 
             </button>
 
             </button>
Line 128: Line 147:
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems can be designed to remove contaminants of soil and water as a food or energy source, providing a non-proliferating solution for cleaning the environment. [9]" data-balloon-pos="up">
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems can be designed to remove contaminants of soil and water as a food or energy source, providing a non-proliferating solution for cleaning the environment. [9]" data-balloon-pos="up">
 
             <a class="designApp" href="#Staple">
 
             <a class="designApp" href="#Staple">
             <img src="https://static.igem.org/mediawiki/2017/6/64/Bubble_PRappBR1.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/6/64/Bubble_PRappBR1.png" id="imageBubble" height="190" width=190 />
             <img src="https://static.igem.org/mediawiki/2017/1/19/Bubble_PRappBR2.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/1/19/Bubble_PRappBR2.png" id="imageBubble" height="190" width=190 />
 
             </a>
 
             </a>
 
             </button>
 
             </button>
Line 135: Line 154:
  
 
     <div class="designBalloon">
 
     <div class="designBalloon">
             <button class="btn-link" data-balloon-length="large" data-balloon="the development of novel proteins is possible with the incorporation of unnatural amino acids in cell-free systems. [10,11]" data-balloon-pos="up">
+
             <button class="btn-link" data-balloon-length="large" data-balloon="The development of novel proteins is possible with the incorporation of unnatural amino acids in cell-free systems. [10,11]" data-balloon-pos="up">
 
             <a class="designApp" href="#Dis">
 
             <a class="designApp" href="#Dis">
             <img src="https://static.igem.org/mediawiki/2017/0/09/Bubble_PRappPE1.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/0/09/Bubble_PRappPE1.png" id="imageBubble" height="190" width=190 />
             <img src="https://static.igem.org/mediawiki/2017/4/4a/Bubble_PRappPE2.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/4/4a/Bubble_PRappPE2.png" id="imageBubble" height="190" width=190 />
 
             </a>
 
             </a>
 
             </button>
 
             </button>
Line 146: Line 165:
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems provide an easy to use, reduced system for testing and characterizing genetic circuits, accelerating the design-build-test cycle. [12]" data-balloon-pos="up">
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems provide an easy to use, reduced system for testing and characterizing genetic circuits, accelerating the design-build-test cycle. [12]" data-balloon-pos="up">
 
             <a class="designApp" href="#Energy">
 
             <a class="designApp" href="#Energy">
             <img src="https://static.igem.org/mediawiki/2017/4/46/Bubble_PRappPT1.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/4/46/Bubble_PRappPT1.png" id="imageBubble" height="190" width=190 />
             <img src="https://static.igem.org/mediawiki/2017/a/ad/Bubble_PRappPT2.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/a/ad/Bubble_PRappPT2.png" id="imageBubble" height="190" width=190 />
 
             </a>
 
             </a>
 
             </button>
 
             </button>
Line 155: Line 174:
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems can be used as a drug delivery platform designed to turn on production of a drug or therapeutic in response to an external stimuli. Additionally, cell-free systems can be used as a high-throughput method for the identification of novel drugs. [13,14]" data-balloon-pos="up">
 
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems can be used as a drug delivery platform designed to turn on production of a drug or therapeutic in response to an external stimuli. Additionally, cell-free systems can be used as a high-throughput method for the identification of novel drugs. [13,14]" data-balloon-pos="up">
 
             <a class="designApp" href="#Materials">
 
             <a class="designApp" href="#Materials">
             <img src="https://static.igem.org/mediawiki/2017/3/34/Bubble_PRappTP1.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/3/34/Bubble_PRappTP1.png" id="imageBubble" height="190" width=190 />
             <img src="https://static.igem.org/mediawiki/2017/6/6c/Bubble_PRappTP2.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/6/6c/Bubble_PRappTP2.png" id="imageBubble" height="190" width=190 />
 
             </a>
 
             </a>
 
             </button>
 
             </button>
Line 162: Line 181:
 
   
 
   
 
     <div class="designBalloon">
 
     <div class="designBalloon">
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems provide an easy to use, non-proliferating alternative to cell-based systems for a variety of space applications, including for the production of important biomolecules or therapeutics and a recycling platform to reduce and reuse waste [15]" data-balloon-pos="up">
+
             <button class="btn-link" data-balloon-length="large" data-balloon="Cell-free systems provide an easy to use, non-proliferating alternative to cell-based systems for a variety of space applications, including the production of important biomolecules or therapeutics and a recycling platform to reduce and reuse waste [15]" data-balloon-pos="up">
 
             <a class="designApp" href="#Utility">
 
             <a class="designApp" href="#Utility">
             <img src="https://static.igem.org/mediawiki/2017/7/7c/Bubble_PRappSE1.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/7/7c/Bubble_PRappSE1.png" id="imageBubble" height="190" width=190 />
             <img src="https://static.igem.org/mediawiki/2017/e/e8/Bubble_PRappSE2.png" height="190" width=190 />
+
             <img src="https://static.igem.org/mediawiki/2017/e/e8/Bubble_PRappSE2.png" id="imageBubble" height="190" width=190 />
 
             </a>
 
             </a>
 
             </button>
 
             </button>
 
     </div>
 
     </div>
 
</div>
 
</div>
<br>
+
<div style="clear:both" id="anchor2"></div>
 +
<br><br>
  
<h2 class="segmentHeader">Types of Cell-free Systems</h2>
+
<div class="segmentDiv">
 
+
    <div class="centerContainer">
<p class="text12"> Cell-free systems include all of the necessary biomachinery for protein production, utilizing cell extracts or a purified reconstituted system.
+
        <h2 class="segmentHeader">Types of Cell-free Systems</h2>
</p>
+
        <p class="text12j">Cell-free systems include all of the necessary biomachinery for protein production, utilizing cell extracts or a purified reconstituted system.</p>
   
+
<center>
+
    <div class="segmentContainer">
+
        <div class="contentDiv" id="text40"><p class="text18"><b>Cell Lysates</b></p>
+
<img style="float:left; margin-right:20px; margin-top:30px; width:  ; height: 210px;" src="https://static.igem.org/mediawiki/2017/9/92/T--Lethbridge--celllysate.png" class="img-responsive">
+
        </div>
+
        <div class="contentDiv" id="text40"><p class ="text18"><b>Purified Reconstituted</b></p>
+
<img style="float:left; margin-left:20px; margin-top:30px; width:  ; height: 210px;" src="https://static.igem.org/mediawiki/2017/2/23/T--Lethbridge--abtubes.png" class="img-responsive">
+
        </div>
+
 
     </div>
 
     </div>
</center>
+
</div>
 
+
<br><br>
    <div style="clear: both"></div><br>
+
    <h2>Cell Lysates</h2>
 
+
     <div class="contentDiv">
<center>
+
         <img style="float:left; margin-left:20px; margin-right:20px; margin-top:10px;" width=250 height=250 src="https://static.igem.org/mediawiki/2017/0/02/Symbol_celllysate_square.png" id="imageHalf">
     <div class="segmentContainer">
+
        <p class="text12j"> Extracts are isolated from <i>Escherichia coli (E. coli)</i>, rabbit reticulocytes, wheat germ, insect cells or human cells [16-21].<br><b><i>Advantages</i></b> - cell lysates are easy to obtain.<br><b><i>Disadvantages</i></b> - lysates are associated with a degree of uncertainty; the composition is unknown and unwanted factors such as DNases and RNases may be present.</p>
         <div class="contentDiv" id="text40"><p class="text18">Extracts are isolated from Escherichia coli (E. coli), rabbit reticulocytes, wheat germ, insect cells or human cells [16-21].</p>
+
        </div>
+
        <div class="contentDiv" id="text40"><p class ="text18">Highly purified and reconstituted coupled transcription and translation (TX-TL) systems are commercially available, including the protein synthesis using recombinant elements (PURExpress) system from New England BioLabs (NEB). The PURExpress system derived from E. coli consists of only 10 translation factors, 20 aminoacyl-tRNA synthetases, 7 enzymes (including ribosomes), 4 energy sources, 20 amino acids and a tRNA mix [22].</p>
+
        </div>
+
 
     </div>
 
     </div>
</center>
+
<br><br>
 
+
       
<div style="clear: both"></div><br>
+
<div style="clear:both"></div>
 
+
    <h2>Purified Reconstituted</h2>
<center>
+
     <div class="contentDiv">
     <div class="segmentContainer">
+
         <img style="float:left; margin-left:20px; margin-right:20px; margin-top:10px;" height=250 width=250 src="https://static.igem.org/mediawiki/2017/0/03/A-B_tubes_square.png" id="imageHalf">
         <div class="contentDiv" id="text40"><p class="text18"><b><i>Advantages</b></i> - cell lysates are easy to obtain.</p>
+
        <p class="text12j"> Highly purified and reconstituted coupled transcription and translation (TX-TL) systems are commercially available. The PURExpress system from New England Biolabs (NEB) is an example of a protein synthesis system made up of recombinant elements. The PURExpress system derived from <i>E. coli</i> consists of only 10 translation factors, 20 aminoacyl-tRNA synthetases, 7 enzymes (including ribosomes), 4 energy sources, 20 amino acids and a tRNA mix [22].<br><b><i>Advantages</i></b> - reduced level of contaminating activities, free of nonspecific nuclease activity, recombinant protein factors are histidine tagged, and various kits are available (standard PURExpress, ∆ ribosome, ∆ tRNA, and ∆ release factor kits).<br><b><i>Disadvantages</i></b> - not open source, not available for everyday consumers, and customization is limited to the kits available.</p>
        </div>
+
        <div class="contentDiv" id="text40"><p class ="text18"><b><i>Advantages</b></i> - reduced level of contaminating activities, free of nonspecific nuclease activity, recombinant protein factors are histidine tagged, various kits available: standard PURExpress, ∆ ribosome, ∆ tRNA, and ∆ release factor.</p>
+
        </div>
+
 
     </div>
 
     </div>
</center>
+
  <br><br>
  
<div style="clear: both"></div><br>
+
<div style="clear: both" id="anchor3"></div><br><br>
  
<center>
+
<h2 class="segmentHeader">Our System</h2>
    <div class="segmentContainer">
+
        <div class="contentDiv" id="text40"><p class="text18"><b><i>Disadvantages</b></i> - lysates are associated with a degree of uncertainty; the composition is unknown and unwanted factors such as DNases and RNases may be present.</p>
+
        </div>
+
        <div class="contentDiv" id="text40"><p class ="text18"><b><i>Disadvantages</b></i> - not open source, not available for everyday consumers, customization is limited to the kits available.</p>
+
        </div>
+
    </div>
+
</center>
+
 
+
<div style="clear: both"></div><br>
+
 
+
<h2 class="segmentHeader">Our System</i></h2>
+
 
<br>
 
<br>
 
<center>
 
<center>
 
     <img src="https://static.igem.org/mediawiki/2017/d/df/Next_vivo_logo_alpha.png" width ; height=170px; padding: 30px; />
 
     <img src="https://static.igem.org/mediawiki/2017/d/df/Next_vivo_logo_alpha.png" width ; height=170px; padding: 30px; />
</center>
+
</center><br><br>
<br><br>
+
<p class="text12"> It is our goal to make a completely customizable and accessible cell-free system, that is inherently safe and user-friendly. To accomplish this we developed N<I>ex</i>t <I>Vivo</i>, a standardized and modular system that contains all of the necessary biomachinery for protein production.
+
</p>
+
  
<p class="text12">We designed, in BioBrick standard, an open-source collection of parts for cell-free protein synthesis. Next vivo allows individual user groups to select which components they want in their system and leave out any additional factors of their choosing. As such, future modules can be added to the system with ease creating a wide variety of customizable TX-TL kits.  
+
<div class="segmentDiv">
</p>
+
    <div class="centerContainer">
 +
        <p class="text12j"> It is our goal to make a completely customizable and accessible cell-free system, that is inherently safe and user-friendly. To accomplish this, we developed N<i>ex</i>t <i>vivo</i>, a standardized and modular system that contains all of the necessary biomachinery for protein production.</p>
 +
        <p class="text12j">We designed, in BioBrick standard, an open-source <a href="https://2017.igem.org/Team:Lethbridge/Part_Collection" id="pageLink"> collection of parts </a>for cell-free protein synthesis. N<i>ex</i>t <i>vivo</i> allows individual user groups to select which components they want in their system and leave out any additional factors of their choosing. As such, future modules can be added to the system with ease, creating a wide variety of customizable TX-TL kits.</p>
 +
        <p class="text12j"> Specifically, we aim to over-express all TX-TL components simultaneously and pool the resulting cell lysates for co-purification, providing a simple method for producing the system. Using our approach, the tRNA and ribosomes will bind to an MS2 coat protein/Ni<sup>2+</sup> complex, and the TX-TL proteins will bind directly to the Ni<sup>2+</sup> affinity chromatography resin. In this way, components can be purified in batch and a tailored cell-free system can be created on demand.</p>
 +
    </div>
 +
</div>
  
<p class="text12"> Specifically, we aim to over-express all TX-TL components simultaneously and pool the resulting cell lysates for co-purification, providing a simple method for producing the system. Using our approach, the tRNA and ribosomes will bind to an MS2 coat protein/nickel complex, and the TX-TL proteins will bind directly to the nickel affinity chromatography resin. In this way, components can be purified in batch and a tailored cell-free system can be created on demand.  
+
    <h2> Biocontainment </h2>
</p>
+
    <div class="contentDiv">
 +
        <img style="float:right; margin-left:20px; margin-right:20px; margin-top:10px; height: 150px;" src="https://static.igem.org/mediawiki/2017/3/3e/T--Lethbridge--codonswapping.png">
 +
        <p class="text12j"> A modular and accessible cell-free platform enables the development of recoding technologies leading to the creation of a modified codon table. Recoded systems are unable to be horizontally transferred to a living system, providing an intrinsic form of biocontainment and preventing accidental environmental release. We have created a <a href="https://2017.igem.org/Team:Lethbridge/Software" id="pageLink">codon re-assignment tool</a> that will produce recoded sequences to support such developments.</p>
 +
    </div>
  
<h2 align= "center"> Biocontainment </h2>
+
<div style="clear:both"></div>
  
<img style="float:right; margin-left:20px; margin-right:20px; margin-top:10px; width:  ; height: 150px;" src="https://static.igem.org/mediawiki/2017/3/3e/T--Lethbridge--codonswapping.png" class="img-responsive">
+
    <h2> Biosecurity </h2>
 +
    <div class="contentDiv">
 +
        <img style="float:left; margin-left:20px; margin-right:20px; margin-top:10px; width:  ; height: 150px;" src="https://static.igem.org/mediawiki/2017/6/6a/T--Lethbridge--software.png">
 +
        <p class="text12j"> With the development of recoded systems comes additional consideration of the impact on biosecurity and the potential for synthesizing compounds undetected by current screening methods. We propose a solution to this problem by providing <a href="https://2017.igem.org/Team:Lethbridge/Software" id="pageLink">software tools</a> to combat the potential misuse of our system and highlight the significant implications of cell-free synthetic biology.</p>
 +
    </div>
 +
       
 +
<div style="clear:both"></div>
  
<p class="text12"> A modular and accessible cell-free platform enables the development of re-coding technologies leading to the creation of a modified codon table. Re-coded systems are unable to be horizontally transferred to living system, providing an intrinsic form of biocontainment and preventing accidental environmental release. We have created a nucleic acid sequence modification tool that will produce re-coded sequences to support such developments.  
+
    <h2> Education </h2>
</p>
+
    <div class="contentDiv">
 +
        <img style="float:right; margin-left:20px; margin-right:20px; margin-top:10px; width:  ; height: 200px;" src="https://static.igem.org/mediawiki/2017/2/29/T--Lethbridge--edkitcovers2.png"><br>
 +
        <p class="text12j">N<i>ex</i>t <i>vivo</i> provides a useful learning tool. Taking advantage of the non-proliferating nature, we have developed <a href="https://2017.igem.org/Team:Lethbridge/HP/Gold_Integrated" id="pageLink">simplified protocols tailored to the Alberta curriculum</a> to teach new users the basic concepts of synthetic biology.</p>
 +
    </div>
  
<h2 align= "center"> Biosecurity </h2>
+
<div style="clear:both" id="anchor4"></div>
  
<img style="float:left; margin-left:20px; margin-right:20px; margin-top:10px; width:  ; height: 150px;" src="https://static.igem.org/mediawiki/2017/6/6a/T--Lethbridge--software.png" class="img-responsive">
+
<br><br><br>
  
<p class="text12"> With the development of re-coded systems comes additional consideration of the impact on biosecurity and the potential for synthesizing compounds undetected by current screening methods. We propose a solution to this problem by providing software tools to combat the potential misuse of our system and highlight the significant implications of cell-free synthetic biology.
+
<div class="segmentDiv">
</p>
+
    <div class="centerContainer">
 
+
        <h2 class="segmentHeader">Recent Advancements</h2>
<h2 align= "center"> Education </h2>
+
        <p class="text12j">Recent work by Shephard <i>et al.</i> [23] published in August of 2017 developed a 30-cistron translation factor module to provide an affordable and scalable method for obtaining a reconstituted TX-TL system. Focusing only on 30 of the 31 translation factors needed for protein synthesis, other necessary factors such as tRNA and ribosomes were not included in their design. Our work improves on this by <a href="https://2017.igem.org/Team:Lethbridge/Design" id="pageLink">providing a strategy</a> for purifying and obtaining tRNA and ribosomes, in addition to all of the factors required for transcription and translation.</p>
 
+
    </div>
<img style="float:right; margin-left:20px; margin-right:20px; margin-top:10px; width:  ; height: 200px;" src="https://static.igem.org/mediawiki/2017/2/29/T--Lethbridge--edkitcovers2.png" class="img-responsive">
+
</div>
<br>
+
<p class="text12">N<I>ex</i>t <I>Vivo</i> provides a useful learning tool.Taking advantage of the non-proliferating nature, we have developed simplified protocols for the educational system to teach new users the basic concepts of synthetic biology.
+
</p>
+
 
+
<br><br><br><br><br><br>
+
 
+
<h2 class="segmentHeader">Recent Advancements</h2>
+
 
+
<p class="text12">Recent work by Shephard et al. [23] published in August of 2017 developed a 30-cistron translation factor module to provide an affordable and scalable method for obtaining a reconstituted TX-TL system. Focusing only on 30 of the 31 translation factors needed for protein synthesis, other necessary factors such as tRNA and ribosomes were not included in their design. Our work improves on this by providing a strategy for purifying and obtaining tRNA and ribosomes, in addition to all of the factors required for transcription and translation.
+
</p>
+
  
 
<br><br><br>
 
<br><br><br>
 
   
 
   
<h2 align= "left"> References</h2>
+
<h2> References</h2>
 
+
        <ul id="litRef" style="list-style: none">
<ul id="litRef" style="list-style: none">
+
            <li>[1] Hodgman, C.E. and M.C. Jewett, Cell-Free Synthetic Biology: Thinking Outside the Cell. Metabolic Engineering, 2012. 14(3): p. 261-269.</li>
<li>[1] Hodgman, C.E. and M.C. Jewett, Cell-Free Synthetic Biology: Thinking Outside the Cell. Metabolic Engineering, 2012. 14(3): p. 261-269.
+
            <li>[2] Chong, S., Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. Current Protocols in Molecular Biology, 2014. 108: p. 16.30.1-11.</li>
<li>[2] Chong, S., Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. Curr Protoc Mol Biol, 2014. 108: p. 16.30.1-11.
+
            <li>[3] Smith, M.T., et al., The emerging age of cell-free synthetic biology. FEBS Letters, 2014. 588(17): p. 2755-2761.</li>
<li>[3] Smith, M.T., et al., The emerging age of cell-free synthetic biology. FEBS Letters, 2014. 588(17): p. 2755-2761.
+
            <li>[4] Caschera, F. and V. Noireaux, Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell. Artificial Life, 2016. 22(2): p. 185-195.</li>
<li>[4] Caschera, F. and V. Noireaux, Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell. Artificial Life, 2016. 22(2): p. 185-195.
+
            <li>[5] Jia, H., et al., Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. New Biotechnology, 2017. 39(Pt B): p. 199-205.</li>
<li>[5] Jia, H., et al., Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. N Biotechnol, 2017. 39(Pt B): p. 199-205.
+
            <li>[6] France, S.P., et al., Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways. ACS Catalysis, 2017. 7(1): p. 710-724.</li>
<li>[6] France, S.P., et al., Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways. ACS Catalysis, 2017. 7(1): p. 710-724.
+
            <li>[7] Jewett, M.C., et al., An integrated cell-free metabolic platform for protein production and synthetic biology. Molecular Systems Biology, 2008. 4: p. 220.</li>
<li>[7] Jewett, M.C., et al., An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol, 2008. 4: p. 220.
+
            <li>[8] Pardee, K., et al., Paper-Based Synthetic Gene Networks. Cell. 159(4): p. 940-954.</li>
<li>[8] Pardee, K., et al., Paper-Based Synthetic Gene Networks. Cell. 159(4): p. 940-954.
+
            <li>[9] Karig, D.K., Cell-free synthetic biology for environmental sensing and remediation. Current Opinion in Biotechnology, 2017. 45: p. 69-75.</li>
<li>[9] Karig, D.K., Cell-free synthetic biology for environmental sensing and remediation. Curr Opin Biotechnol, 2017. 45: p. 69-75.
+
            <li>[10] Wang, L., Genetically encoding new bioreactivity. New Biotechnology, 2017. 38(Part A): p. 16-25.</li>
<li>[10] Wang, L., Genetically encoding new bioreactivity. New Biotechnology, 2017. 38(Part A): p. 16-25.
+
            <li>[11] Kawakami, T., et al., Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor. ACS Chemical Biology, 2016. 11(6): p. 1569-77.</li>
<li>[11] Kawakami, T., et al., Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor. ACS Chem Biol, 2016. 11(6): p. 1569-77.
+
            <li>[12] Sun, Z.Z., et al., Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synthetic Biology, 2014. 3(6): p. 387-97.</li>
<li>[12] Sun, Z.Z., et al., Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth Biol, 2014. 3(6): p. 387-97.
+
            <li>[13] Nagumo, Y., et al., PURE mRNA display for in vitro selection of single-chain antibodies. Journal of Biochemistry, 2016. 159(5): p. 519-26.</li>
<li>[13] Nagumo, Y., et al., PURE mRNA display for in vitro selection of single-chain antibodies. J Biochem, 2016. 159(5): p. 519-26.
+
            <li>[14] Elani, Y., R.V. Law, and O. Ces, Vesicle-based artificial cells: recent developments and prospects for drug delivery. Therapeutic Delivery, 2015. 6(5): p. 541-3.</li>
<li>[14] Elani, Y., R.V. Law, and O. Ces, Vesicle-based artificial cells: recent developments and prospects for drug delivery. Ther Deliv, 2015. 6(5): p. 541-3.
+
            <li>[15] Menezes, A.A., et al., Grand challenges in space synthetic biology. Journal of the Royal Society Interface, 2015. 12(113): p. 20150803.</li>
<li>[15] Menezes, A.A., et al., Grand challenges in space synthetic biology. J R Soc Interface, 2015. 12(113): p. 20150803.
+
            <li>[16] Carlson, E.D., et al., Cell-Free Protein Synthesis: Applications Come of Age. Biotechnology advances, 2012. 30(5): p. 1185-1194.</li>
<li>[16] Carlson, E.D., et al., Cell-Free Protein Synthesis: Applications Come of Age. Biotechnology advances, 2012. 30(5): p. 1185-1194.
+
            <li>[17] Shin, J. and V. Noireaux, An E. coli Cell-Free Expression Toolbox: Application to Synthetic Gene Circuits and Artificial Cells. ACS Synthetic Biology, 2012. 1(1): p. 29-41.</li>
<li>[17] Shin, J. and V. Noireaux, An E. coli Cell-Free Expression Toolbox: Application to Synthetic Gene Circuits and Artificial Cells. ACS Synthetic Biology, 2012. 1(1): p. 29-41.
+
            <li>[18] Garamella, J., et al., The All E. coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. ACS Synthetic Biology, 2016. 5(4): p. 344-355.</li>
<li>[18] Garamella, J., et al., The All E. coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. ACS Synthetic Biology, 2016. 5(4): p. 344-355.
+
            <li>[19] Tarui, H., et al., Establishment and characterization of cell-free translation/glycosylation in insect cell (Spodoptera frugiperda 21) extract prepared with high pressure treatment. Applied Microbiology and Biotechnology, 2001. 55(4): p. 446-53.</li>
<li>[19] Tarui, H., et al., Establishment and characterization of cell-free translation/glycosylation in insect cell (Spodoptera frugiperda 21) extract prepared with high pressure treatment. Appl Microbiol Biotechnol, 2001. 55(4): p. 446-53.
+
            <li>[20] Katzen, F., G. Chang, and W. Kudlicki, The past, present and future of cell-free protein synthesis. Trends in Biotechnology, 2005. 23(3): p. 150-6.</li>
<li>[20] Katzen, F., G. Chang, and W. Kudlicki, The past, present and future of cell-free protein synthesis. Trends Biotechnol, 2005. 23(3): p. 150-6.
+
            <li>[21] Mikami, S., et al., A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expression and Purification, 2008. 62(2): p. 190-8.</li>
<li>[21] Mikami, S., et al., A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expr Purif, 2008. 62(2): p. 190-8.
+
            <li>[22] Shimizu, Y., et al., Cell-free translation reconstituted with purified components. Nature biotechnology, 2001. 19(8): p. 751-755.</li>
<li>[22] Shimizu, Y., et al., Cell-free translation reconstituted with purified components. Nature biotechnology, 2001. 19(8): p. 751-755.
+
            <li>[23] Shepherd, T.R., et al., De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Research, 2017. 45(18): p. 10895-10905.</li>
<li>[23] Shepherd, T.R., et al., De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Research, 2017. 45(18): p. 10895-10905.
+
        </ul>
 
+
    </div>
</ul>
+
    </div>
 
+
    </div>
</div>
+
</div>
+
</div>
+
 
<br>
 
<br>
 
<img src="https://static.igem.org/mediawiki/2017/7/7d/Banner_footer_blank.png" class="bannerImg">
 
<img src="https://static.igem.org/mediawiki/2017/7/7d/Banner_footer_blank.png" class="bannerImg">
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 01:16, 2 November 2017




“The International Genetically Engineered Machine (iGEM) Foundation is an independent, non-profit organization dedicated to EDUCATION and COMPETITION, the ADVANCEMENT of synthetic biology, and the development of an OPEN COMMUNITY and collaboration.”


For our tenth year as an iGEM team, we wanted to give back to the community and looked to the iGEM mission statement for inspiration. To align our project with the foundation, we developed a tool to advance synthetic biology and increase its accessibility to novices, hobbyists and experts.

Cell-free Systems

Cell-free systems allow for a reliable and consistent expression of recombinant proteins outside of a living cell, bypassing issues with genetic regulation and cellular noise [1].

Such systems are advantageous over cell-based synthetic biology due to the:

  • Capability of tolerating toxins normally detrimental to the cell
  • Ability to direct all energy resources to the application, increasing the freedom of design
  • Inherent feature of reduced biocontamination, as components do not replicate mutate or evolve
  • Easy control of transcription and translation in an open environment
  • Easy incorporation of unnatural amino acids
  • Capacity to modulate the environment for optimal protein expression
  • Rapid design-build-test cycle
  • Proficiency of using both linear and circular template DNA




Applications

Emerging as a new platform for synthetic biology, cell-free systems have shown potential for use in a variety of applications exemplifying the utility of such systems [2,3].



Types of Cell-free Systems

Cell-free systems include all of the necessary biomachinery for protein production, utilizing cell extracts or a purified reconstituted system.



Cell Lysates

Extracts are isolated from Escherichia coli (E. coli), rabbit reticulocytes, wheat germ, insect cells or human cells [16-21].
Advantages - cell lysates are easy to obtain.
Disadvantages - lysates are associated with a degree of uncertainty; the composition is unknown and unwanted factors such as DNases and RNases may be present.



Purified Reconstituted

Highly purified and reconstituted coupled transcription and translation (TX-TL) systems are commercially available. The PURExpress system from New England Biolabs (NEB) is an example of a protein synthesis system made up of recombinant elements. The PURExpress system derived from E. coli consists of only 10 translation factors, 20 aminoacyl-tRNA synthetases, 7 enzymes (including ribosomes), 4 energy sources, 20 amino acids and a tRNA mix [22].
Advantages - reduced level of contaminating activities, free of nonspecific nuclease activity, recombinant protein factors are histidine tagged, and various kits are available (standard PURExpress, ∆ ribosome, ∆ tRNA, and ∆ release factor kits).
Disadvantages - not open source, not available for everyday consumers, and customization is limited to the kits available.





Our System




It is our goal to make a completely customizable and accessible cell-free system, that is inherently safe and user-friendly. To accomplish this, we developed Next vivo, a standardized and modular system that contains all of the necessary biomachinery for protein production.

We designed, in BioBrick standard, an open-source collection of parts for cell-free protein synthesis. Next vivo allows individual user groups to select which components they want in their system and leave out any additional factors of their choosing. As such, future modules can be added to the system with ease, creating a wide variety of customizable TX-TL kits.

Specifically, we aim to over-express all TX-TL components simultaneously and pool the resulting cell lysates for co-purification, providing a simple method for producing the system. Using our approach, the tRNA and ribosomes will bind to an MS2 coat protein/Ni2+ complex, and the TX-TL proteins will bind directly to the Ni2+ affinity chromatography resin. In this way, components can be purified in batch and a tailored cell-free system can be created on demand.

Biocontainment

A modular and accessible cell-free platform enables the development of recoding technologies leading to the creation of a modified codon table. Recoded systems are unable to be horizontally transferred to a living system, providing an intrinsic form of biocontainment and preventing accidental environmental release. We have created a codon re-assignment tool that will produce recoded sequences to support such developments.

Biosecurity

With the development of recoded systems comes additional consideration of the impact on biosecurity and the potential for synthesizing compounds undetected by current screening methods. We propose a solution to this problem by providing software tools to combat the potential misuse of our system and highlight the significant implications of cell-free synthetic biology.

Education


Next vivo provides a useful learning tool. Taking advantage of the non-proliferating nature, we have developed simplified protocols tailored to the Alberta curriculum to teach new users the basic concepts of synthetic biology.




Recent Advancements

Recent work by Shephard et al. [23] published in August of 2017 developed a 30-cistron translation factor module to provide an affordable and scalable method for obtaining a reconstituted TX-TL system. Focusing only on 30 of the 31 translation factors needed for protein synthesis, other necessary factors such as tRNA and ribosomes were not included in their design. Our work improves on this by providing a strategy for purifying and obtaining tRNA and ribosomes, in addition to all of the factors required for transcription and translation.




References

  • [1] Hodgman, C.E. and M.C. Jewett, Cell-Free Synthetic Biology: Thinking Outside the Cell. Metabolic Engineering, 2012. 14(3): p. 261-269.
  • [2] Chong, S., Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications. Current Protocols in Molecular Biology, 2014. 108: p. 16.30.1-11.
  • [3] Smith, M.T., et al., The emerging age of cell-free synthetic biology. FEBS Letters, 2014. 588(17): p. 2755-2761.
  • [4] Caschera, F. and V. Noireaux, Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell. Artificial Life, 2016. 22(2): p. 185-195.
  • [5] Jia, H., et al., Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. New Biotechnology, 2017. 39(Pt B): p. 199-205.
  • [6] France, S.P., et al., Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways. ACS Catalysis, 2017. 7(1): p. 710-724.
  • [7] Jewett, M.C., et al., An integrated cell-free metabolic platform for protein production and synthetic biology. Molecular Systems Biology, 2008. 4: p. 220.
  • [8] Pardee, K., et al., Paper-Based Synthetic Gene Networks. Cell. 159(4): p. 940-954.
  • [9] Karig, D.K., Cell-free synthetic biology for environmental sensing and remediation. Current Opinion in Biotechnology, 2017. 45: p. 69-75.
  • [10] Wang, L., Genetically encoding new bioreactivity. New Biotechnology, 2017. 38(Part A): p. 16-25.
  • [11] Kawakami, T., et al., Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor. ACS Chemical Biology, 2016. 11(6): p. 1569-77.
  • [12] Sun, Z.Z., et al., Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synthetic Biology, 2014. 3(6): p. 387-97.
  • [13] Nagumo, Y., et al., PURE mRNA display for in vitro selection of single-chain antibodies. Journal of Biochemistry, 2016. 159(5): p. 519-26.
  • [14] Elani, Y., R.V. Law, and O. Ces, Vesicle-based artificial cells: recent developments and prospects for drug delivery. Therapeutic Delivery, 2015. 6(5): p. 541-3.
  • [15] Menezes, A.A., et al., Grand challenges in space synthetic biology. Journal of the Royal Society Interface, 2015. 12(113): p. 20150803.
  • [16] Carlson, E.D., et al., Cell-Free Protein Synthesis: Applications Come of Age. Biotechnology advances, 2012. 30(5): p. 1185-1194.
  • [17] Shin, J. and V. Noireaux, An E. coli Cell-Free Expression Toolbox: Application to Synthetic Gene Circuits and Artificial Cells. ACS Synthetic Biology, 2012. 1(1): p. 29-41.
  • [18] Garamella, J., et al., The All E. coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology. ACS Synthetic Biology, 2016. 5(4): p. 344-355.
  • [19] Tarui, H., et al., Establishment and characterization of cell-free translation/glycosylation in insect cell (Spodoptera frugiperda 21) extract prepared with high pressure treatment. Applied Microbiology and Biotechnology, 2001. 55(4): p. 446-53.
  • [20] Katzen, F., G. Chang, and W. Kudlicki, The past, present and future of cell-free protein synthesis. Trends in Biotechnology, 2005. 23(3): p. 150-6.
  • [21] Mikami, S., et al., A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins. Protein Expression and Purification, 2008. 62(2): p. 190-8.
  • [22] Shimizu, Y., et al., Cell-free translation reconstituted with purified components. Nature biotechnology, 2001. 19(8): p. 751-755.
  • [23] Shepherd, T.R., et al., De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Research, 2017. 45(18): p. 10895-10905.