Line 24: | Line 24: | ||
font-size: 20px; | font-size: 20px; | ||
} | } | ||
− | p::first-letter { | + | p.head::first-letter { |
color: #cc3333; | color: #cc3333; | ||
font-size: 40px; | font-size: 40px; | ||
} | } | ||
− | + | </style> | |
+ | <script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> | ||
+ | MathJax.Hub.Config({ | ||
+ | tex2jax: { | ||
+ | inlineMath: [['$','$'], ['\\(','\\)']], | ||
+ | processEscapes: true | ||
+ | } | ||
+ | }); | ||
+ | </script> | ||
<div id="grad"> | <div id="grad"> | ||
Line 37: | Line 45: | ||
<div class="background"> | <div class="background"> | ||
<h1 style="text-align:center; padding: 30px; font-size:50px; color: white;">Model</h1> | <h1 style="text-align:center; padding: 30px; font-size:50px; color: white;">Model</h1> | ||
− | <p style="text-align:center;color: white; padding: 10px 10px 60px 10px; font-size:15px;">All aspects of the HEKcite project have been inspired by the heart. This is no different for the model. Numerous attempts have been made in the past to mathematically describe the ion currents through the cell membrane of cardiac cells. The efforts include models for different species and different cell types. The purpose of developing these models is to gain insight into the electrical dynamics of the cell in total and the kinetics of its ion channels separately. The practice of modelling these currents dates back to 1952, when Hodgkin and Huxley came up with a model for a giant squid axon that fitted experimental observations quite well. Since then the search for the perfect model has continued and a lot of researchers have devoted their time to this. </p> | + | <p class="head" style="text-align:center;color: white; padding: 10px 10px 60px 10px; font-size:15px;">All aspects of the HEKcite project have been inspired by the heart. This is no different for the model. Numerous attempts have been made in the past to mathematically describe the ion currents through the cell membrane of cardiac cells. The efforts include models for different species and different cell types. The purpose of developing these models is to gain insight into the electrical dynamics of the cell in total and the kinetics of its ion channels separately. The practice of modelling these currents dates back to 1952, when Hodgkin and Huxley came up with a model for a giant squid axon that fitted experimental observations quite well. Since then the search for the perfect model has continued and a lot of researchers have devoted their time to this.</p> |
</div> | </div> | ||
Line 43: | Line 51: | ||
<div class="container"> | <div class="container"> | ||
<h2>Introduction into Electrophysiology</h2> | <h2>Introduction into Electrophysiology</h2> | ||
− | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | + | <p style="text-align:justify; padding: 0px 50px 0px 50px;">To get a proper understanding of how we modelled HEKcite, some basic insights into electrophysiology are needed. More specifically, insights into the mathematical description of electrophysiology. Let us begin by looking closely at the cell membrane. We define the inner side by a, and the outer side by b. In our simplified model of the membrane, we begin by assuming that there is a difference in ion concentrations between the cytosol and the extracellular environment. Because of this concentration gradient, some of these ions will start to diffuse through the membrane. This movement causes an unbalance between the two compartments, resulting in a difference in potential across the membrane: also referred to as \[V_m = \phi^a– \phi^b\]\ |
− | + | ||
− | + | ||
− | + | ||
</p> | </p> | ||
<h3>Electrical membrane model</h3> | <h3>Electrical membrane model</h3> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
− | |||
− | |||
</p> | </p> | ||
<h3>Hodgkin-Huxley</h3> | <h3>Hodgkin-Huxley</h3> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
− | |||
− | |||
</p> | </p> | ||
<h3>Different ‘gates’</h3> | <h3>Different ‘gates’</h3> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
</p> | </p> | ||
<h3></h3> | <h3></h3> | ||
Line 70: | Line 68: | ||
<h2>Model Framework</h2> | <h2>Model Framework</h2> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</p> | </p> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
Line 95: | Line 73: | ||
<h2>Results</h2> | <h2>Results</h2> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
</p> | </p> | ||
<center><img SRC="https://static.igem.org/mediawiki/2017/b/b0/KULeuven_2017_model_1.png" width="60%"></img></center> | <center><img SRC="https://static.igem.org/mediawiki/2017/b/b0/KULeuven_2017_model_1.png" width="60%"></img></center> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
</p> | </p> | ||
<br> | <br> | ||
<center><img SRC="https://static.igem.org/mediawiki/2017/c/c9/KULeuven_2017_model_2.png" width="60%"></img></center> | <center><img SRC="https://static.igem.org/mediawiki/2017/c/c9/KULeuven_2017_model_2.png" width="60%"></img></center> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
− | |||
− | |||
</p> | </p> | ||
<br> | <br> | ||
<center><img SRC="https://static.igem.org/mediawiki/2017/f/fd/KULeuven_2017_model_4.png" width="60%"></img></center> | <center><img SRC="https://static.igem.org/mediawiki/2017/f/fd/KULeuven_2017_model_4.png" width="60%"></img></center> | ||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
− | |||
− | |||
</p> | </p> | ||
<br> | <br> | ||
<center><img SRC="https://static.igem.org/mediawiki/2017/8/8b/KULeuven_2017_model_3.png" width="60%"></img></center> | <center><img SRC="https://static.igem.org/mediawiki/2017/8/8b/KULeuven_2017_model_3.png" width="60%"></img></center> | ||
− | |||
− | |||
<p style="text-align:justify; padding: 0px 50px 0px 50px;"> | <p style="text-align:justify; padding: 0px 50px 0px 50px;"> | ||
− | |||
</p> | </p> | ||
<br> | <br> | ||
<h4>References</h4> | <h4>References</h4> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> |
Revision as of 01:22, 2 November 2017
Model
All aspects of the HEKcite project have been inspired by the heart. This is no different for the model. Numerous attempts have been made in the past to mathematically describe the ion currents through the cell membrane of cardiac cells. The efforts include models for different species and different cell types. The purpose of developing these models is to gain insight into the electrical dynamics of the cell in total and the kinetics of its ion channels separately. The practice of modelling these currents dates back to 1952, when Hodgkin and Huxley came up with a model for a giant squid axon that fitted experimental observations quite well. Since then the search for the perfect model has continued and a lot of researchers have devoted their time to this.
Introduction into Electrophysiology
To get a proper understanding of how we modelled HEKcite, some basic insights into electrophysiology are needed. More specifically, insights into the mathematical description of electrophysiology. Let us begin by looking closely at the cell membrane. We define the inner side by a, and the outer side by b. In our simplified model of the membrane, we begin by assuming that there is a difference in ion concentrations between the cytosol and the extracellular environment. Because of this concentration gradient, some of these ions will start to diffuse through the membrane. This movement causes an unbalance between the two compartments, resulting in a difference in potential across the membrane: also referred to as \[V_m = \phi^a– \phi^b\]\
Electrical membrane model
Hodgkin-Huxley
Different ‘gates’
Model Framework
Results