Difference between revisions of "Team:Missouri Rolla"

(Prototype team page)
 
m
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{Missouri_Rolla}}
 
{{Missouri_Rolla}}
 
<html>
 
<html>
 
 
<div class="column full_size" >
 
<img src="http://placehold.it/2000x300/d3d3d3/f2f2f2">
 
</div>
 
 
 
 
 
<div class="column full_size" >
 
<div class="column full_size" >
<h1> Welcome to iGEM 2017! </h1>
+
<h1> Missouri University of Science and Technology iGEM Team 2017 </h1>
<p>Your team has been approved and you are ready to start the iGEM season! </p>
+
<p>Plant-based biosensors have immense benefits over analytical chemistry or potentiometric techniques for a variety of reasons. Plants have an inherent biological property of taking up chemicals over time and have access to a large sample of groundwater, which allows them to be more accurate than many market available testers - which often do not test for particulates or at very low concentrations. A biosensor has the added benefit of not compromising ease of use when increasing accuracy. When an appropriate indicator is selected, the average person should be able to look at a plant and immediately notice that a contaminant is present.<br><br>
</div>
+
 
+
<div class="clear"></div>
+
 
+
<div class="column half_size" >
+
<h5>Before you start: </h5>
+
<p> Please read the following pages:</p>
+
<ul>
+
<li>  <a href="https://2017.igem.org/Competition">Competition Hub</a> </li>
+
<li> <a href="https://2017.igem.org/Competition/Deliverables/Wiki">Wiki Requirements page</a></li>
+
<li> <a href="https://2017.igem.org/Resources/Template_Documentation">Template documentation</a></li>
+
</ul>
+
</div>
+
 
+
<div class="column half_size" >
+
<div class="highlight">
+
<h5> Styling your wiki </h5>
+
<p>You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.</p>
+
<p>While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.</p>
+
</div>
+
</div>
+
 
+
<div class="column full_size" >
+
<h5> Wiki template information </h5>
+
<p>We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the <a href="https://2017.igem.org/Judging/Pages_for_Awards">Pages for awards</a> link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!</p>
+
 
+
</div>
+
 
+
 
+
 
+
 
+
<div class="column half_size" >
+
<h5> Editing your wiki </h5>
+
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>
+
<p> <a href="https://2017.igem.org/wiki/index.php?title=Team:Example&action=edit"> </a>Use WikiTools - Edit in the black menu bar to edit this page</p>
+
 
+
</div>
+
 
+
 
+
<div class="column half_size" >
+
<h5>Tips</h5>
+
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
+
<ul>
+
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
+
<li>Be clear about what you are doing and how you plan to do this.</li>
+
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
+
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
+
<li>Avoid using very small fonts and low contrast colors; information should be easy to read. </li>
+
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="https://2017.igem.org/Calendar">iGEM 2017 calendar</a> </li>
+
<li>Have lots of fun! </li>
+
</ul>
+
</div>
+
 
+
 
+
<div class="column half_size" >
+
<h5>Inspiration</h5>
+
<p> You can also view other team wikis for inspiration! Here are some examples:</p>
+
<ul>
+
<li> <a href="https://2014.igem.org/Team:SDU-Denmark/"> 2014 SDU Denmark </a> </li>
+
<li> <a href="https://2014.igem.org/Team:Aalto-Helsinki">2014 Aalto-Helsinki</a> </li>
+
<li> <a href="https://2014.igem.org/Team:LMU-Munich">2014 LMU-Munich</a> </li>
+
<li> <a href="https://2014.igem.org/Team:Michigan"> 2014 Michigan</a></li>
+
<li> <a href="https://2014.igem.org/Team:ITESM-Guadalajara">2014 ITESM-Guadalajara </a></li>
+
<li> <a href="https://2014.igem.org/Team:SCU-China"> 2014 SCU-China </a></li>
+
</ul>
+
</div>
+
  
<div class="column half_size" >
+
Our team selected Arabidopsis as the system for our biosensor and trichloroethylene, or TCE, as our first contaminant of interest. Trichloroethylene is the most common groundwater contaminant in the United States, contaminating between 9 and 34% of drinking water in the US. TCE has been classified as a carcinogen; many of its biological metabolites are highly reactive and have cancerous effects to specific organs. A plant that could be placed outside of factories possibly releasing TCE, or even a house plant to be watered by from the tap drinking water, could prove to be a powerful agent in reducing the amount of TCE consumed by humans.<br><br>
<h5> Uploading pictures and files </h5>
+
<p> You can upload your pictures and files to the iGEM 2017 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name. <br />
+
When you upload, set the "Destination Filename" to <br><code>T--YourOfficialTeamName--NameOfFile.jpg</code>. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)<br><br>
+
  
<a href="https://2017.igem.org/Special:Upload">
+
Though we focused first on TCE, ideally our system could spread to a variety of groundwater or drinking water contaminants. The system is based on important developments in biosensors, namely the creation of synthetic signal transduction systems in plants and the redesign of natural periplasmic binding proteins for the detection of new ligands. So simply, a plant is exposed to contaminated water, a designed periplasmic binding protein binds that protein, a signal transduction pathway causes a reporter piece of DNA to be triggered, which in our case will lastly de-green the plant, meaning that the plant will turn almost clear when exposed to the contaminant. This will become obvious to any observer, and they can then begin to take the next necessary precautions.
UPLOAD FILES
+
</a>
+
 
</p>
 
</p>
 
</div>
 
</div>
 +
<img class="notgelpic" src="https://static.igem.org/mediawiki/2017/c/cb/T--Missouri_Rolla--plants.jpg" />
  
  

Latest revision as of 02:37, 2 November 2017

Missouri_Rolla

Missouri University of Science and Technology iGEM Team 2017

Plant-based biosensors have immense benefits over analytical chemistry or potentiometric techniques for a variety of reasons. Plants have an inherent biological property of taking up chemicals over time and have access to a large sample of groundwater, which allows them to be more accurate than many market available testers - which often do not test for particulates or at very low concentrations. A biosensor has the added benefit of not compromising ease of use when increasing accuracy. When an appropriate indicator is selected, the average person should be able to look at a plant and immediately notice that a contaminant is present.

Our team selected Arabidopsis as the system for our biosensor and trichloroethylene, or TCE, as our first contaminant of interest. Trichloroethylene is the most common groundwater contaminant in the United States, contaminating between 9 and 34% of drinking water in the US. TCE has been classified as a carcinogen; many of its biological metabolites are highly reactive and have cancerous effects to specific organs. A plant that could be placed outside of factories possibly releasing TCE, or even a house plant to be watered by from the tap drinking water, could prove to be a powerful agent in reducing the amount of TCE consumed by humans.

Though we focused first on TCE, ideally our system could spread to a variety of groundwater or drinking water contaminants. The system is based on important developments in biosensors, namely the creation of synthetic signal transduction systems in plants and the redesign of natural periplasmic binding proteins for the detection of new ligands. So simply, a plant is exposed to contaminated water, a designed periplasmic binding protein binds that protein, a signal transduction pathway causes a reporter piece of DNA to be triggered, which in our case will lastly de-green the plant, meaning that the plant will turn almost clear when exposed to the contaminant. This will become obvious to any observer, and they can then begin to take the next necessary precautions.