Difference between revisions of "Team:KU Leuven/HP/Gold Integrated"

Line 125: Line 125:
 
                             <div class="intro">
 
                             <div class="intro">
 
                                 <h3>Professor Wim Van Paesschen</h3>
 
                                 <h3>Professor Wim Van Paesschen</h3>
                                 <p>Professor doctor Wim Van Paesschen is a neurosurgeon specialized in epilepsy. He also is head of the epilepsy research laboratory, part-time teaches at the faculty of medicine and supervises thesis students.</p>
+
                                 <p>Professor Wim Van Paesschen is a neurosurgeon specialized in epilepsy. He also is head of the epilepsy research laboratory of the UZ Leuven, and is a lecturer at the faculty of medicine.</p>
 
                             </div>
 
                             </div>
 
                             <div class="shortcontent">
 
                             <div class="shortcontent">
                                 <p>Professor Van Paesschen confirmed that therapeutic drug monitoring is necessary for anti-epileptics and mentioned the importance of verifying patient compliance. He also showed us that our project has more potential than even we imagined by giving some more examples of possible applications.</p>
+
                                 <p>Professor Van Paesschen confirmed that therapeutic drug monitoring is important for anti-epileptic compounds and mentioned the necessity of verifying patient compliance. He was very enthusiastic about the project, and even suggested other possible applications for the HEKcite cells.</p>
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
 
                         <div class="content" style="display: none;">
 
                         <div class="content" style="display: none;">
 
                             <p>
 
                             <p>
                                In light of our group focusing on drug monitoring as our target for human practices, anti-epileptic drugs seemed to be a quite interesting to research. Given that, we set a meeting with Doctor/Neurologist Wim Van Paesschen, a specialist in epilepsy. Prior to the meeting, our main interest was figuring out if drug monitoring was in fact needed for patients being treated from epilepsy, and it case it was, how could the concept of HEKcite come in handy for said patients. During the meeting, Prof. Van Paesschen showed a great deal of excitement and enthusiasm about the concept of HEKcite, assuring us that drug monitoring of anti-epileptics is indeed necessary, especially for patients suffering severe forms of epilepsy. There have been already various attempts to implement drug monitoring in epilepsy patients but none were quite successful. Since the concept of HEKcite mainly relies on different ion channels, his advice wasn’t to necessarily work with the most used anti-epileptics, but instead focus on those directly linked to the ion channels we are working with. Some of those include: Retigabine which opens potassium channels or ethosuximide which influences T-type calcium channels. Furthermore, some epileptics bind partially to albumin which hinders their activity. Nowadays laboratory tests can only measure the total concentration of anti-epileptics in the blood and not only the free, active concentration. Our system would be able to distinguish between the free, active versus the bound, non-active drug compounds. Another crucial point that was discussed during the meeting was what the patients would think/react to idea of an inserted monitoring device. He proceeded to say that field of “biosensors” is now a very interesting, growing field, and due to its simplicity and accuracy, it would be most welcome by patients. Prof. Van Paesschen was also so helpful, shedding light on a very important matter related to drug monitoring, that is, checking patients’ compliance. He mentioned how that is such a big problem especially with epilepsy patients, and that HEKcite could also be used to solve that problem. Last but not least, he gave a few suggestions for other useful applications that HEKcite could be used for. First of all he gave the idea of using our system as a form of personalized medicine. By using ion channels who contain the exact mutation of the patient, we could use our system to verify which drug is most effective specifically for the mutated channel of the patient. Next to this, he mentioned that epilepsy is often the result of multiple mutations in multiple channels. Our system could study the interactions between different ion channels and their mutation to further understand the mechanisms that can lead to epilepsy. These examples of the professor show again the diversity of our project and the great range of possible applications. All in all, the meeting was extremely helpful to us. We were able to leave the meeting with an answer to our original inquiry, that is, if the concept of HEKcite could be useful with patients with cases of epilepsy. We were also able to realize the full potential of the project and its various applications, giving us extra motivation and drive to move forward with our human practices.
+
                              As our group focuses on drug monitoring as an application, anti-epileptic drugs seemed to be interesting to research. Therefore, we set a meeting with doctor and neurologist Wim Van Paesschen, who is a specialist in epilepsy. Our goal was to discuss the importance of drug monitoring for patients being treated from epilepsy, and whether the HEKcite project could be useful in this regard.  
 
                             </p>
 
                             </p>
 +
                            <p>During the meeting, professor Van Paesschen showed a great deal of excitement and enthusiasm about the project, and assured us that drug monitoring of anti-epileptics is indeed necessary, especially for patients who suffer from severe forms of epilepsy. There have been various attempts to introduce therapeutic drug monitoring for epilepsy patients, but none have been successful so far.</p>
 +
                            <p>Since the concept of HEKcite mainly relies on different ion channels, professor Van Paesschen advices us to focus on the anti-epileptic compounds that directly influence ion channels, even though they are not the most commonly used. Some examples are retigabine, which opens potassium channels, and ethosuximide, which influences T-type calcium channels. Additionally, he mentions that some anti-epileptics can bind to the blood protein albumin, which hinders their activity. Laboratory tests can only measure the total concentration of anti-epileptics in the blood, and are unable to detect the amount of free, active compound. Using our system, we would measure the concentration of free drugs that are able to interact with the ion channels in vivo, which would be a great advantage.</p>
 +
<p>Furthermore, we asked professor Van Paesschen whether he thinks patients would agree with an inserted monitoring device. He proceeded to say that biosensing is a very interesting and growing field, and that it would be most welcome by patients, due to its simplicity and accuracy. He also mentions that checking patients’ compliance is crucial for epilepsy treatment, and that the HEKcite project could be used to solve that problem. </p>
 +
                            <p>Last but not least, he gave a few suggestions for other useful applications of the HEKcite project. First of all, he suggested using our system as a form of personalized medicine. By using ion channels that contain the exact mutation present in the patient, we could use our system to verify which drug is most effective for his or her exact condition. Additionally, he mentioned that epilepsy is often the result of multiple mutations in several channels. Our system could study the interactions between the different ion channels and their mutations to further improve the understanding of the mechanisms that can lead to epilepsy. </p>
 +
<p>These examples further illustrate that the project could be used for multiple applications. All in all, the meeting was extremely helpful to us, as he was able to confirm our suspicions that HEKcite could be useful for patients of epilepsy, and shed some more light on the further possibilities within this field.
 +
 +
</p>
 +
 +
 +
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>

Revision as of 12:01, 30 August 2017

Human practices

In HEKcite we create an oscillating HEK-cell, but for what purpose? Therapeutic drug monitoring is our answer. In the treatment of multiple severe diseases, a stable concentration of drugs is crucial. Steady blood levels determine therapeutic outcomes and increase survival rates. Currently, the most common therapeutic drug monitoring technique is blood sampling. For patients who need lifelong observation, the numerous hospital visits and frequent blood samplings can have a negative effect on the quality of life. Therefore, we develop a system that allows patients to determine the level of drugs at home. Furthermore, the ease of these measurements allows for daily or even continuous analysis.

Using this dynamic data collection instead of the static measurements performed in hospitals today, we might increase both therapeutic outcomes and quality of life of patients. In order to investigate the different views on our projects we talked to specialists in several fields where therapeutic drug monitoring is of great importance: transplantations, psychotics and epileptics. Three specialists have provided insights in how they expect our project will influence the lives of their patients and future treatments. We used this information to further shape our project.

Professor Diethard Monbaliu

Professor Monbaliu is a reputable abdominal transplant surgeon, at the department of microbiology and immunology at UZ Leuven. He is also responsible for a course on topographical and radiological anatomy and supervises several thesis students.

Professor Monbaliu confirmed our expectations that there is a need for a more dynamic measurement. In addition, he suspects that it could lead to a better evaluation of patients’ compliance. Together, these advances could result in fewer transplant rejections. He has also brought our attention to a novel and more prevalent immunosuppressant drug, tacrolimus. Finally, he mentioned that patient variability is an issue in his field, and that our device should take this into account. Want to learn more? Press for more details.

Professor Chris Bervoets

Professor Chris Bervoets is a psychiatrist. He is responsible for the department of transcranial magnetic stimulation, the department of deep brain stimulation and the department of compulsive disorders within the UPC (University Psychiatric Center) of KU Leuven. Additionally, he conducts research on neuromodulatory treatments for various psychiatric disorders.

While investigating different branches in medicine that could benefit from improved therapeutic drug monitoring, our attention was drawn to psychiatry. In this field, there are several drugs, for example lithium, that affect ion channels and could therefore be measured directly by our system. These aspects spiked our interest, and to learn more we contacted the specialist professor Chris Bervoets, who gave us some valuable insights in the difficult world of psychiatry.

Professor Wim Van Paesschen

Professor Wim Van Paesschen is a neurosurgeon specialized in epilepsy. He also is head of the epilepsy research laboratory of the UZ Leuven, and is a lecturer at the faculty of medicine.

Professor Van Paesschen confirmed that therapeutic drug monitoring is important for anti-epileptic compounds and mentioned the necessity of verifying patient compliance. He was very enthusiastic about the project, and even suggested other possible applications for the HEKcite cells.

professor Iemand anders

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.