Difference between revisions of "Team:KU Leuven/Parts"

Line 54: Line 54:
 
                           </p>
 
                           </p>
  
<div id="contentBox" style="margin:0px auto; width:70%">
+
<div id="contentBox" style="margin:0px auto; width:90%; box-align:center; ">
  
 
  <!-- columns divs, float left, no margin so there is no space between column, width=1/3 -->
 
  <!-- columns divs, float left, no margin so there is no space between column, width=1/3 -->
     <div id="column1" style="float:left; text-align:justify; margin:20; width:50%;">
+
     <div id="column1" style="float:left; text-align:justify; margin:20px; width:40%;">
 
     <center><b>Biobrick 1: mHCN2</b></center>   
 
     <center><b>Biobrick 1: mHCN2</b></center>   
 
<i>Hyperpolarization-activated cyclic nucleotide–gated</i> (HCN) channels are a family of ion channels responsible for the generation of rhythmic activity in heart and nerve cells. Consequently, they are often nicknamed pacemaker channels. They show several unique characteristics: first of all, the channels are opened in response to hyperpolarisation instead of depolarisation. Furthermore, they are not completely selective for K<sup>+</sup>-ions, and as a result, there is a small Na<sup>+</sup> inward current which causes a slow depolarisation of the membrane, the so-called funny current or pacemaker depolarisation. These attributes cause the particular rhythmic behaviour of cells containing HCN channels, and as a result, an HCN channel is vital for our project.<br>
 
<i>Hyperpolarization-activated cyclic nucleotide–gated</i> (HCN) channels are a family of ion channels responsible for the generation of rhythmic activity in heart and nerve cells. Consequently, they are often nicknamed pacemaker channels. They show several unique characteristics: first of all, the channels are opened in response to hyperpolarisation instead of depolarisation. Furthermore, they are not completely selective for K<sup>+</sup>-ions, and as a result, there is a small Na<sup>+</sup> inward current which causes a slow depolarisation of the membrane, the so-called funny current or pacemaker depolarisation. These attributes cause the particular rhythmic behaviour of cells containing HCN channels, and as a result, an HCN channel is vital for our project.<br>
Line 63: Line 63:
 
</div>
 
</div>
  
     <div id="column2" style="float:right; margin:0;width:40%;">
+
     <div id="column2" style="float:left; text-align:justify;margin:20px;width:40%;">
     CONTENT
+
     <center><b>Biobrick 2: hERG</b></center>
    </div>
+
Another gene that has played a major role in our project is the <i>human Ether-à-go-go-Related Gene</i>, also known as hERG and, alternatively, as <i>KCNH2</i>. Like HCN, it is associated with the rhythm generated in natural sinus node cells. It encodes the K<sup>+</sup>-channel responsible for the repolarisation during the cardiac action potential. Furthermore, the hERG-encoded protein K<sub>v</sub>11.1 is of great medical and pharmaceutical importance, as inhibition of this protein is associated with the dangerous long QT syndrome, which may result in fainting, seizures and even sudden death. Therefore, hERG inhibition is a major antitarget in drug development, and all drugs have to be tested for hERG inhibition in early development.<br>
 
+
We have created a biobrick based on the hERG gene, which has allowed us to replicate the sinus rhythm in HEK-293 cells. The biobrick has been developed based on the human mRNA isoform 1 sequence, which we have adapted to conform to the biobrick standard. In order to achieve this standard, multiple illegal restriction sites have been removed by silent mutations. We think this biobrick might be useful for future projects in the field of electrophysiology, but also for projects with a pharmaceutical aspect, as testing for hERG inhibition is an important aspect of drug development.
 +
<br> More information can be found  <a href="http://parts.igem.org/Part:BBa_K2263001">on the registry page.</a>
 
</div>
 
</div>
  
<div class="row">
 
  <div class="col"><center><b>Biobrick 1: mHCN2</b></center>
 
<i>Hyperpolarization-activated cyclic nucleotide–gated</i> (HCN) channels are a family of ion channels responsible for the generation of rhythmic activity in heart and nerve cells. Consequently, they are often nicknamed pacemaker channels. They show several unique characteristics: first of all, the channels are opened in response to hyperpolarisation instead of depolarisation. Furthermore, they are not completely selective for K<sup>+</sup>-ions, and as a result, there is a small Na<sup>+</sup> inward current which causes a slow depolarisation of the membrane, the so-called funny current or pacemaker depolarisation. These attributes cause the particular rhythmic behaviour of cells containing HCN channels, and as a result, an HCN channel is vital for our project.
 
In our project, we have created a biobrick based on the HCN2 isoform found in mice. The gene has been adapted to conform to the biobrick standard, meaning that several prohibited restriction sequences have been deleted by silent mutations. Furthermore, we have lowered the GC content of the protein, to enable production of the gene as an IDT gBlock for use in our and in future projects.
 
</div>
 
  <div class="col"><center><b>BBa_K2263001: hERG</b></center></div>
 
 
</div>
 
</div>
  

Revision as of 21:27, 30 October 2017


Parts

We have designed several new biobricks related to electrophysiology, which will enable future teams to develop novel projects in this field. They are ion channels, adapted to conform to the biobrick standard.


For our project, ion channels were crucial. This is why we added four new ion channel-biobricks to the registry.

Biobrick 1: mHCN2
Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are a family of ion channels responsible for the generation of rhythmic activity in heart and nerve cells. Consequently, they are often nicknamed pacemaker channels. They show several unique characteristics: first of all, the channels are opened in response to hyperpolarisation instead of depolarisation. Furthermore, they are not completely selective for K+-ions, and as a result, there is a small Na+ inward current which causes a slow depolarisation of the membrane, the so-called funny current or pacemaker depolarisation. These attributes cause the particular rhythmic behaviour of cells containing HCN channels, and as a result, an HCN channel is vital for our project.
In our project, we have created a biobrick based on the HCN2 isoform found in mice. The gene has been adapted to conform to the biobrick standard, meaning that several prohibited restriction sequences have been deleted by silent mutations. Furthermore, we have lowered the GC content of the protein, to enable production of the gene as an IDT gBlock for use in our and in future projects.
More information can be found on the registry page.
Biobrick 2: hERG
Another gene that has played a major role in our project is the human Ether-à-go-go-Related Gene, also known as hERG and, alternatively, as KCNH2. Like HCN, it is associated with the rhythm generated in natural sinus node cells. It encodes the K+-channel responsible for the repolarisation during the cardiac action potential. Furthermore, the hERG-encoded protein Kv11.1 is of great medical and pharmaceutical importance, as inhibition of this protein is associated with the dangerous long QT syndrome, which may result in fainting, seizures and even sudden death. Therefore, hERG inhibition is a major antitarget in drug development, and all drugs have to be tested for hERG inhibition in early development.
We have created a biobrick based on the hERG gene, which has allowed us to replicate the sinus rhythm in HEK-293 cells. The biobrick has been developed based on the human mRNA isoform 1 sequence, which we have adapted to conform to the biobrick standard. In order to achieve this standard, multiple illegal restriction sites have been removed by silent mutations. We think this biobrick might be useful for future projects in the field of electrophysiology, but also for projects with a pharmaceutical aspect, as testing for hERG inhibition is an important aspect of drug development.
More information can be found on the registry page.