Difference between revisions of "Team:Austin UTexas/Results"

Line 119: Line 119:
 
<br>
 
<br>
  
<p style="font-family: verdana">Additionally, the BsmBI sites and overhangs in pYTK001 are flanking a <i>gfp</i> reporter gene. During the part assembly process, our DNA sequences of interest replaced this <i>gfp</i> reporter gene. This provided a phenotypic screen that allowed us to visually see which transformant colonies were negative and potentially positive. <b>Under UV illumination, positive colonies containing our intended part plasmid assembly did not exhibit fluorescence under the UV illumination, while negative colonies did (Fig. 2)</b>. The non-fluorescent colonies on the part plasmid transformation plates were miniprepped and subsequently sequence verified.</p>
+
<p style="font-family: verdana">Additionally, the BsmBI sites and overhangs in pYTK001 are flanking a <i>gfp</i> reporter gene. During the part assembly process, our DNA sequences of interest replaced this <i>gfp</i> reporter gene. This provided a phenotypic screen that allowed us to visually see which transformant colonies were negative and potentially positive. <b>Under UV illumination, positive colonies containing our intended part plasmid assembly did not exhibit fluorescence under the UV illumination, while negative colonies did (Fig. 2)</b>. The non-fluorescent colonies on the part plasmid transformation plates were miniprepped and subsequently sequence verified. Other part plasmids used in subsequent cassette assemblies were directly obtained from UT's Golden Gate Part Repository.</p>
  
 
<br>
 
<br>
Line 157: Line 157:
  
 
</html>
 
</html>
[[File:T--Austin_UTexas--P8P32trans.jpg|thumb|center|800px|<b>Figure 4.</b> P8/P32 test cassette plasmid transformation plates, under normal and UV lights. Under normal lights, the colonies appeared purple-blue in color. Under UV, the colonies fluoresced red.]]
+
[[File:T--Austin_UTexas--P8P32trans.jpg|thumb|center|800px|<b>Figure 4.</b> P8/P32 test cassette plasmid transformation plates, under normal (faced up) and UV lights (faced down). Under normal lights, the colonies appeared purple-blue in color. Under UV illumination, the colonies fluoresced red.]]
 
<html>
 
<html>
  
Line 203: Line 203:
  
  
<p>Along with being one of the canonical amino acids utilized in protein synthesis, glutamate plays an important role as the main amino-group donor in the biosynthesis of nitrogen-containing compounds such as amino acids and nucleotides (4, 5). Thus, we hypothesized that <i>gadB</i> overexpression via the P8 and P32 constitutive promoters and the high-copy-number ColE1 origin induced a high metabolic load on the cells by shunting away glutamate from essential anabolic pathways. Additionally, having high <i>gadB</i> expression does not confer a selective advantage to the cells. We believed that transformants containing the mutationally degraded <i>gadB</i> gene were favored in the population, as "breaking" the metabolically-taxing <i>gadB</i> gene gave these transformants a competitive advantage, allowing them to utilize glutamate sources towards growth. In contrast, transformants containing the functional <i>gadB</i> gene were selected against due to having a depletion of glutamate needed for important cellular processes. </p>
+
<p>Along with being one of the canonical amino acids utilized in protein synthesis, glutamate plays an important role as the main amino-group donor in the biosynthesis of nitrogen-containing compounds such as amino acids and nucleotides (4, 5). Thus, we hypothesized that <i>gadB</i> overexpression via the P8 and P32 constitutive promoters and the high-copy-number ColE1 origin induced a high metabolic load on the cells by shunting away glutamate from essential anabolic pathways. Additionally, having high <i>gadB</i> expression does not confer a selective advantage to the cells. We believed that transformants containing the mutationally inactivated <i>gadB</i> gene were favored in the population, as "breaking" the metabolically-taxing <i>gadB</i> gene gave these transformants a competitive advantage, allowing them to utilize glutamate sources towards growth. In contrast, transformants containing the functional <i>gadB</i> gene were selected against due to having a depletion of glutamate needed for important cellular processes. </p>
  
 
<br>
 
<br>

Revision as of 18:22, 1 November 2017


Results

Although bacteria can naturally synthesize GABA, we wanted to increase expression of the gadB gene and subsequently GABA production in order to give our intended probiotic, Lactobacillus plantarum a more potent medicinal quality, with the idea that this GABA-overproducing probiotic can then be consumed by patients with bowel disorders, hypternsion or anxiety (1). Overexpression of the gadB gene will be accomplished by placing it under the control of either the P8 or P32 constitutive promoters from Lactococcus lactis (2).

To make our GABA-producing probiotic, we ultimately needed to assemble a GABA overexpression cassette plasmid using the Golden Gate assembly method. The intention here is that bacteria containing this GABA overexpression cassette plasmid should produce high levels of GABA. In short, Golden Gate Assembly is a new cloning method that allows for the creation of a multi-part DNA assembly (i.e. cassette plasmid) in a single reaction through the use of DNA parts containing specific, predefined suffixes and prefixes with recognition sites for Type IIs restriction enzymes (e.g. BsmBI and BsaI). The specificity of these suffixes and prefixes provides directionality of the desired DNA parts during the assembly process. For our purposes, we used the MoClo Yeast Tool Kit developed by John Dueber (3).

We decided to first assemble and test our Golden Gate plasmids in E. coli, which was chosen due to the ease in which we could genetically manipulate it. We then wanted to use these Golden Gate plasmids to genetically manipulate L. platnarum. This part of the project required us to assemble a Golden Gate compatible shuttle vector (compatible in both E. coli and L. plantarum ) and transform L. plantarum. Our experimental results are detailed below.




Click on one of the images above to learn more about our results!