Project Description
friendliness for isolation - but for phosphorus there is neither substitution nor replacement."
友好取代孤立 - 但是磷既不能取代也没有替代品。”
stanowiącej część rodziny języków indoeuropejskich."
dan penyendirian dengan keramahan - tetapi untuk fosfor tidak ada penggantinya."
et la gentillesse par l’isolation mais pour le phosphore, il n’y a ni substitution, ni remplacement"
la amistad por el aislamiento - pero para el fósforo no hay substitución ni alternativa."
- Isaac Asimov’s ‘Life’s Bottleneck’
- 艾萨克·阿西莫夫 “人生的瓶颈”
- Isaac Asimov’s ‘Life’s Bottleneck’
- Isaac Asimov’s ‘Life’s Bottleneck’
- Isaac Asimov’s ‘Life’s Bottleneck’
- Isaac Asimov’s ‘L’étranglement de la vie’
磷是地球上最常见的元素之一,是所有生物体的基本要素。 从脱氧核糖核酸到细胞膜,磷对于各种生物分子是必不可少的。磷对于粮食生产来说也是至关重要的,因为它是农业肥料除了氮和钾之外的三大主要成分之一。
不幸的是,磷酸盐岩是有限的资源。绝大部分的储备分布于摩洛哥,多达全球磷酸盐储备的77%也就是500亿吨。磷峰值预计将在2030年左右达到,而如果目前的提取率没有变化,预计储备将会在50-100年内用尽。 这将对世界人口趋势造成严重打击,因为满足日益增加的食品需求将成为不可能的任务。
与此同时,农业废水中大量的磷盐流入河流和湖泊,造成一个重大的环境问题:富营养化。 富营养化造成藻华,耗尽溶解氧并导致水生生物窒息而死亡,从而大大减少生物多样性并破坏自然生态的平衡。因此,我们紧需一个能有效保存和回收磷酸盐的解决方案。
Phosphorus, one of the most common element on earth, is a fundamental element for all living organisms. From DNA to cell membranes, phosphorus is essential for a variety of biological molecules. Phosphorus is also vital for food production as it is one of the three main component of agricultural fertilizers, alongside nitrogen and potassium.
Unfortunately, phosphate rock is a finite resource. The vast majority of the reserves can only be found in Morocco which controls 77% of the global phosphate reserves with 50 billion tonnes. Peak phosphorus is expected to be reached around 2030 and reserves are predicted to be exhausted in 50-100 years if current rates of extraction does not change. This will deliver a serious blow to the rising world population as meeting increasing demand for food may become an impossible task.
At the same time, significant amounts of phosphorus end up in rivers and lakes as agricultural wastewater, giving rise to a major environmental problem: eutrophication. Eutrophication creates algal blooms, exhausting dissolved oxygen levels and killing aquatic organisms, thus heavily reducing biodiversity and disrupting our ecosystem. Hence, there is a need for a solution to conserve and recycle phosphate efficiently.
Fosfor adalah unsur kimia yang mendasar bagi seluruh makhluk hidup. Dari DNA ke membran sel, fosfor sangat penting untuk berbagai molekul biologis. Fosfor juga penting untuk produksi pangan karena merupakan salah satu dari tiga komponen utama pupuk pertanian, di samping nitrogen dan kalium.
Akan tetapi, batuan fosfat merupakan sumber daya yang terbatas. Sebagian besar batuan fosfat hanya dapat ditemukan di Kerajaan Maroko yang menguasai 77% cadangan fosfat global dengan 50 milliar ton. Puncak fosfor diperkirakan akan mencapai pada tahun 2030 dan cadangan diperkirakan akan habis dalam 50-100 tahun kedepan jika tidak ada aksi lanjut. Hal ini menjadi perhatian karena peningkatan permintaan makanan global yang disertai dengan meningkatnya populasi dunia.
Untuk menambah, banyak jumlah fosfor yang berakhir di sungai dan danau sebagai air limbah pertanian, sehingga menimbulkan pencemaran lingkungan utama: eutrofikasi. Eutrofikasi memungkinkan alga, tumbuhan air berukuran mikro, untuk berkembang biak dengan pesat. Hal ini merendahkan konsentrasi oksigen terlarut dan menyebabkan kematian makhluk hidup air dan menggangu keseimbangan ekosistem air. Oleh karena itu, diperlukan solusi untuk melestarikan dan mendaur ulang fosfat secara efisien.
El fósforo, uno de los elementos más comunes en la tierra, es un elemento fundamental para todos los seres vivos. Desde el ADN hasta las membranas celulares, el fósforo es esencial para una gran variedad de moléculas biológicas. El fósforo es también vital para la producción de alimentos, ya que es uno de los tres componentes principales de los fertilizantes agrícolas, junto con el nitrógeno y el potasio.
Desafortunadamente, la roca fosfática es un recurso natural finito. La gran mayoría de las reservas sólo se pueden encontrar en Marruecos, el cual controla el 77% de las reservas mundiales de fosfato con 50.000 millones de toneladas. Se espera que la explotación de fósforo alcance su máximo aproximadamente en el 2030 y está previsto que las reservas se agoten en 50-100 años a partir de entonces si las tasas actuales de extracción no cambian. Esto causará un duro golpe a la creciente población mundial ya que la satisfacción de la creciente demanda de alimentos puede convertirse en una tarea imposible dado que el fósforo representa uno de los principales componentes de fertilizantes agrícolas.
Al mismo tiempo, cantidades significativas de fósforo terminan en ríos y lagos como aguas residuales agrícolas, dando lugar a un importante problema ambiental: la eutrofización. La eutrofización crea brotes de algas, agotando los niveles de oxígeno disuelto y matando a los organismos acuáticos, reduciendo así la biodiversidad y perturbando nuestro ecosistema. Por lo tanto, existe la necesidad de encontrar una solución para conservar y reciclar el fosfato eficientemente.
Le phosphore, un des éléments de la terre les plus communs, est fondamental pour tous les organismes vivants. De l’ADN aux membranes cellulaires, le phospore est essential pour une variété de molécules biologiques. Le phospore est également vital dans la production alimentaire comme c’est l’un des trois composants principaux des engrais agricoles avec le nitrogène et le potassium.
Malheureusement, la roche de phosphore est une ressource limitée. La grande majorité des réserves se trouve seulement au Maroc qui controle 77% des réserves totales de phosphate avec 50 milliards de tonnes. On s’attend à ce que l’extraction du phosphate atteigne son niveau maximum d’ici 2030 et on prédit que les réserves seront épuisées d’ici 50 ou 100 ans si le rythme d’extraction ne change pas. Cela aura une sérieuse répercussion sur la population mondiale croissante car satisfaire la demande alimentaire grandissante deviendra une tâche impossible.
En même temps des quantités considérables de phosphore se retrouvent dans les rivières et les lacs en tant qu’eaux usées agricoles ce qui provoque un problème écologique majeur : l’eutrophisation. L’eutrophisation crée une floraison d’algues, épuisant les niveaux d’oxygène dissous et tuant les organismes aquatiques réduisant ainsi lourdement la diversité biologique et bouleversant notre écosystème. Nous avons donc besoin d’une solution pour conserver et recycler le phosphate efficacement.
We are engineering a bacteria that can store and accumulate increased levels of phosphate through microcompartments. Phosphate is stored in bacteria in the form of a polyphosphate chain, built by the enzyme, polyphosphate kinase (PPK). Exopolyphosphatase (PPX) functions to breaks down this chain, providing phosphate to be used by the bacteria.
We are targeting PPK to the inside of the microcompartment, enabling chains of phosphate to be stored within the protective protein shell. Because it is inside this storage, PPX and the bacteria cannot get access to the phosphate chain and therefore will take up more phosphate from its surroundings to make up for the unaccessible phosphate. This creates a bacteria that can take up and store a higher level of phosphate than normal.
To find out how we will achieve this experimentally, please click here to visit our wet lab page.
我们正在设计一种细菌,可以通过细菌微区室储存和积聚大量的磷酸盐。 磷酸盐通过多聚磷酸盐激酶(PPK)的催化以多聚磷酸盐的形式储存在细菌中,而外切聚磷酸酶(PPX)分解多聚磷酸盐末端,脱去磷酸盐残基。 同时,由蛋白质壳组成的细菌微区室能够作为保护外层。
当PPK被标记到微区室的内部时,微区室保护多聚磷酸盐不被PPX分解,因此多聚磷酸盐可以被大量的积聚。细菌将从周围的环境吸收更多的磷酸盐,产生比普通细菌更高的磷酸盐水平。
点击此链接参考我们的实验计划。
We are engineering a bacteria that can store and accumulate increased levels of phosphate through microcompartments. Phosphate is stored in bacteria in the form of a polyphosphate chain, built by the enzyme, polyphosphate kinase (PPK). Exopolyphosphatase (PPX) functions to breaks down this chain, providing phosphate to be used by the bacteria.
We are targeting PPK to the inside of the microcompartment, enabling chains of phosphate to be stored within the protective protein shell. Because it is inside this storage, PPX and the bacteria cannot get access to the phosphate chain and therefore will take up more phosphate from its surroundings to make up for the unaccessible phosphate. This creates a bacteria that can take up and store a higher level of phosphate than normal.
To find out how we will achieve this experimentally, please click here to visit our wet lab page.
Kami akan merekayasa genetik bakteri Escherichia coli sehingga bisa menyimpan dan mengumpulkan fosfat dari lingkungan melalui kompartemen mikro (microcompartment). Fosfat akan disimpan dalam bentuk rantai polifosfat, yang dibuat oleh enzim, polyphosphate kinase (PPK). Exopolyphosphatase (PPX) berfungsi untuk memecahkan rantai tersebut agar fosfat bisa digunakan oleh bakteri.
Melalui sebuah signal peptida, kami akan memasukkan PPK kedalam kompartemen mikro agar rantai polifosfat dapat disimpan di dalamnya. Oleh karena rantai polifosfat berada di dalam penyimpanan ini, PPX dan bakteri tidak dapat mengakses rantai fosfat sehingga bakteri akan mengambil lebih banyak fosfat dari lingkungan untuk kebutuhan hidupnya. Ini akan menciptakan bakteri yang bisa mengambil dan menyimpan kadar fosfat yang lebih tinggi dari biasanya.
Untuk mengetahui bagaimana kita akan mencapai eksperimen ini, silahkan klik di sini untuk mengunjungi lab basah kami.
Estamos diseñando una bacteria que puede almacenar y acumular mayores niveles de fosfato a través de microcompartimentos. El fosfato se almacena en bacterias en una cadena de polifosfato, construida por la enzima, polifosfato quinasa (PPK). Exopolifosfatasa (PPX) se utiliza para romper esta cadena, proporcionando fosfato para ser utilizado por bacterias.
Estamos transportando PPK al interior de los microcompartimentos, permitiendo así que las cadenas de fosfato se almacenen dentro de la cáscara protectora de la proteína. Debido a que PKK se almacenará dentro de los microcompatimentos, PPX y las bacterias no podrán tener acceso a la cadena de fosfato y por lo tanto, deberán tomar más fosfato de su entorno para compensar la inaccesibilidad de fosfato. Esto llevará a crear una bacteria que podrá absorber y almacenar un nivel más alto de fosfato de lo normal.
Para averiguar cómo lograremos conseguir esto experimentalmente, haga clic aquí para visitar nuestra wet lab.
Nous sommes en train de développer une bactérie qui peut stocker et accumuler des niveaux plus importants de phosphate à travers des micro-compartiments. Le phosphate est stocké dans des bactéries sous la forme d’une chaine de polyphosphate, construit par l’enzyme polyphosphate kinase (PPK). Les fonctions de l’exopolyphosphatase (PPX) sont de dissoudre cette chaine en libérant le phosphate que les bactéries pourront utiliser.
Nous dirigeons le PPK à l’intérieur du micro-compartiment ce qui permet aux chaines de phosphate d’être stockées à l’intérieur de l’enveloppe protéine protectrice. A l’intérieur de ce compartiment, le PPX et les bactéries ne peuvent pas avoir accès à la chaine de phosphate et de ce fait vont absorber davantage de phosphate de leur milieu pour compenser le phosphate inaccessible. Cela crée une bactérie qui peut absorber et stocker un niveau de phosphate plus important que la normale.
Pour découvrir comment nous pouvons accomplir cela expérimentalement, veuillez cliquer ici pour visiter notre page wet lab.
working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress.
working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress.
working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress.
working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress working progress.